In mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to binary operations, which use two operands. An example is any function f : A → A, where A is a set. The function f is a unary operation on A. Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial n!), functional notation (e.g. sin x or sin(x)), and superscripts (e.g. transpose A^T). Other notations exist as well, for example, in the case of the square root, a horizontal bar extending the square root sign over the argument can indicate the extent of the argument. Obtaining the absolute value of a number is a unary operation. This function is defined as where is the absolute value of . This is used to find the negative value of a single number. This is technically not a unary operation as is just short form of . Here are some examples: As unary operations have only one operand they are evaluated before other operations containing them. Here is an example using negation: Here, the first '−' represents the binary subtraction operation, while the second '−' represents the unary negation of the 2 (or '−2' could be taken to mean the integer −2). Therefore, the expression is equal to: Technically, there is also a unary + operation but it is not needed since we assume an unsigned value to be positive: The unary + operation does not change the sign of a negative operation: In this case, a unary negation is needed to change the sign: In trigonometry, the trigonometric functions, such as , , and , can be seen as unary operations. This is because it is possible to provide only one term as input for these functions and retrieve a result. By contrast, binary operations, such as addition, require two different terms to compute a result.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.