In mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to binary operations, which use two operands. An example is any function f : A → A, where A is a set. The function f is a unary operation on A. Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial n!), functional notation (e.g. sin x or sin(x)), and superscripts (e.g. transpose A^T). Other notations exist as well, for example, in the case of the square root, a horizontal bar extending the square root sign over the argument can indicate the extent of the argument. Obtaining the absolute value of a number is a unary operation. This function is defined as where is the absolute value of . This is used to find the negative value of a single number. This is technically not a unary operation as is just short form of . Here are some examples: As unary operations have only one operand they are evaluated before other operations containing them. Here is an example using negation: Here, the first '−' represents the binary subtraction operation, while the second '−' represents the unary negation of the 2 (or '−2' could be taken to mean the integer −2). Therefore, the expression is equal to: Technically, there is also a unary + operation but it is not needed since we assume an unsigned value to be positive: The unary + operation does not change the sign of a negative operation: In this case, a unary negation is needed to change the sign: In trigonometry, the trigonometric functions, such as , , and , can be seen as unary operations. This is because it is possible to provide only one term as input for these functions and retrieve a result. By contrast, binary operations, such as addition, require two different terms to compute a result.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.