Pitot theoremThe Pitot theorem in geometry states that in a tangential quadrilateral the two pairs of opposite sides have the same total length. It is named after French engineer Henri Pitot. A tangential quadrilateral is usually defined as a convex quadrilateral for which all four sides are tangent to the same inscribed circle. Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral.
Orthocentroidal circleIn geometry, the orthocentroidal circle of a non-equilateral triangle is the circle that has the triangle's orthocenter and centroid at opposite ends of its diameter. This diameter also contains the triangle's nine-point center and is a subset of the Euler line, which also contains the circumcenter outside the orthocentroidal circle. Andrew Guinand showed in 1984 that the triangle's incenter must lie in the interior of the orthocentroidal circle, but not coinciding with the nine-point center; that is, it must fall in the open orthocentroidal disk punctured at the nine-point center.
Isotomic conjugateIn geometry, the isotomic conjugate of a point P with respect to a triangle △ABC is another point, defined in a specific way from P and △ABC: If the base points of the lines PA, PB, PC on the sides opposite A, B, C are reflected about the midpoints of their respective sides, the resulting lines intersect at the isotomic conjugate of P. We assume that P is not collinear with any two vertices of △ABC. Let A', B', C' be the points in which the lines AP, BP, CP meet sidelines BC, CA, AB (extended if necessary).
Law of cotangentsIn trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles. This is also known as the Cot Theorem. Just as three quantities whose equality is expressed by the law of sines are equal to the diameter of the circumscribed circle of the triangle (or to its reciprocal, depending on how the law is expressed), so also the law of cotangents relates the radius of the inscribed circle of a triangle (the inradius) to its sides and angles.
Circumconic and inconicIn Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. Suppose A, B, C are distinct non-collinear points, and let △ABC denote the triangle whose vertices are A, B, C. Following common practice, A denotes not only the vertex but also the angle ∠BAC at vertex A, and similarly for B and C as angles in △ABC. Let the sidelengths of △ABC.