A noble metal is ordinarily regarded as a metallic chemical element that is generally resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals (ruthenium, rhodium, palladium, osmium, iridium) are most often so classified. Silver, copper and mercury are sometimes included as noble metals, however less often as each of these usually occurs in nature combined with sulfur.
In more specialized fields of study and applications the number of elements counted as noble metals can be smaller or larger. In physics, there are only three noble metals: copper, silver and gold. In dentistry, silver is not always counted as a noble metal since it is subject to corrosion when present in the mouth. In chemistry, the term noble metal is sometimes applied more broadly to any metallic or semimetallic element that does not react with a weak acid and give off hydrogen gas in the process. This broader set includes copper, mercury, technetium, rhenium, arsenic, antimony, bismuth and polonium, as well as gold, the six platinum group metals, and silver.
TOC
While noble metal lists can differ, they tend to cluster around the six platinum group metals (ruthenium, rhodium, palladium, osmium, iridium, platinum) plus gold.
In addition to this term's function as a compound noun, there are circumstances where noble is used as an adjective for the noun metal. A galvanic series is a hierarchy of metals (or other electrically conductive materials, including composites and semimetals) that runs from noble to active, and allows one to predict how materials will interact in the environment used to generate the series. In this sense of the word, graphite is more noble than silver and the relative nobility of many materials is highly dependent upon context, as for aluminium and stainless steel in conditions of varying pH.
The term noble metal can be traced back to at least the late 14th century and has slightly different meanings in different fields of study and application.