In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values (true or false).
In some programming languages, any expression can be evaluated in a context that expects a Boolean data type. Typically (though this varies by programming language) expressions like the number zero, the empty string, empty lists, and null evaluate to false, and strings with content (like "abc"), other numbers, and objects evaluate to true.
Sometimes these classes of expressions are called "truthy" and "falsy" / "false".
In classical logic, with its intended semantics, the truth values are true (denoted by 1 or the verum ⊤), and untrue or false (denoted by 0 or the falsum ⊥); that is, classical logic is a two-valued logic. This set of two values is also called the Boolean domain. Corresponding semantics of logical connectives are truth functions, whose values are expressed in the form of truth tables. Logical biconditional becomes the equality binary relation, and negation becomes a bijection which permutes true and false. Conjunction and disjunction are dual with respect to negation, which is expressed by De Morgan's laws:
¬(p ∧ q) ⇔ ¬p ∨ ¬q
¬(p ∨ q) ⇔ ¬p ∧ ¬q
Propositional variables become variables in the Boolean domain. Assigning values for propositional variables is referred to as valuation.
Constructivism (mathematics)
In intuitionistic logic, and more generally, constructive mathematics, statements are assigned a truth value only if they can be given a constructive proof. It starts with a set of axioms, and a statement is true if one can build a proof of the statement from those axioms. A statement is false if one can deduce a contradiction from it. This leaves open the possibility of statements that have not yet been assigned a truth value.
Unproven statements in intuitionistic logic are not given an intermediate truth value (as is sometimes mistakenly asserted).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
Logic synthesis describes techniques to map complex functionality into a sequence of a few, simple, and small logic primitives. It finds application dominantly in digital design, but is most recently
We propose a new approach for normalization and simplification of logical formulas. Our approach is based on algorithms for lattice-like structures. Specifically, we present two efficient algorithms for computing a normal form and deciding the word problem ...
Machine Learning (ML) is on the rise in medicine, promising improved diagnostic, therapeutic and prognostic clinical tools. While these technological innovations are bound to transform health care, they also bring new ethical concerns to the forefront. One ...
2021
What is fundamental in vision has been discussed for millennia. For philosophical realists and the physiological approach to vision, the objects of the outer world are truly given, and failures to perceive objects properly, such as in illusions, are just s ...
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
In logic, mathematics and linguistics, and () is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as or or (prefix) or or in which is the most modern and widely used. The and of a set of operands is true if and only if all of its operands are true, i.e., is true if and only if is true and is true. An operand of a conjunction is a conjunct.
Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Each logical system in this class shares characteristic properties: Law of excluded middle and double negation elimination Law of noncontradiction, and the principle of explosion Monotonicity of entailment and idempotency of entailment Commutativity of conjunction De Morgan duality: every logical operator is dual to another While not entailed by the preceding conditions, contemporary discussions of classical logic normally only include propositional and first-order logics.