Felix SchürmannFelix Schürmann is co-director of the Blue Brain Project and involved in several research challenges of the European Human Brain Project. He studied physics at the University of Heidelberg, Germany, supported by the German National Academic Foundation. Later, as a Fulbright Scholar, he obtained his Master's degree (M.S.) in Physics from the State University of New York, Buffalo, USA, under the supervision of Richard Gonsalves. During these studies, he became curious about the role of different computing substrates and dedicated his master thesis to the simulation of quantum computing. He studied for his Ph.D. at the University of Heidelberg, Germany, under the supervision of Karlheinz Meier. For his thesis he co-designed an efficient implementation of a neural network in hardware.
Maher KayalMaher Kayal received M.S. and Ph.D degrees in electrical engineering from the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) in 1983 and 1989 respectively. He has been with the Electronics laboratories of the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) since 1990, where he is currently a professor and director of the Energy Management and Sustainability" section. He has published many scientific papers, coauthor of three text books dedicated to mixed-mode CMOS design and he holds eleven patents. His technical contributions have been in the area of analog and Mixed-signal circuits design including highly linear and tunable sensors microsystems, signal processing and green energy management.
Prizes and Honors
Electronics Letters journal Premium Award 2013,
Outstanding Paper Award? IEEE Mixdes 2013
Basil Papadias paper Award, IEEE Powertech 2013
Best Paper Awards, Mixdes 2013
Best Paper Awards, ICCAS 2012
Outstanding Paper Award- IEEE Mixdes 2012.
Poland Section IEEE ED Chapter special award in 2011.
Credit Suisse Award for Best Teaching- 2009.
The William M. Portnoy Award at the Energy Conversion Congress and Exposition , California Sept 2009.
Best Paper Award - IEEE-Mixdes 2009.
High Quality Paper - IEEE Power Tech Conference June 2009.
Best Paper Award - IEEE-Mixdes 2007.
Best Paper Award - IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics - 2006.
Best Application Specific Integrated Circuit at the International European Design and Test Conference ED&TC - 1997.
Ascom Award for the Best Work in Telecommunication Fields 1990.
Publications Books.
Books:
Methodology for the Digital Calibration of Analog Circuits and Systems, Marc Pastre & Maher Kayal. Springer Publisher- (ISBN 1-4020-4252-3)-2006.
Structured Analog CMOS Design, Danica Stefanovic & Maher Kayal. Springer Publisher-(ISBN 978-1-4020-8572-7)-2008.
Linear CMOS RF Amplifiers for Wireless Applications, Maher Kayal, Springer Publisher. (ISBN 978-90-481-9360-8)-2010.
Coeditor of Microelectronics Education Kluwer Academic Publishers. (ISBN 1-4020-2072-4). -2004.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Jean-Philippe ThiranJean-Philippe Thiran was born in Namur, Belgium, in August 1970. He received the Electrical Engineering degree and the PhD degree from the Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium, in 1993 and 1997, respectively. From 1993 to 1997, he was the co-ordinator of the medical image analysis group of the Communications and Remote Sensing Laboratory at UCL, mainly working on medical image analysis. Dr Jean-Philippe Thiran joined the Signal Processing Institute (ITS) of the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in February 1998 as a senior lecturer. He was promoted to Assistant Professor in 2004, to Associate Professor in 2011 and is now a Full Professor since 2020. He also holds a 20% position at the Department of Radiology of the University of Lausanne (UNIL) and of the Lausanne University Hospital (CHUV) as Associate Professor ad personam. Dr Thiran's current scientific interests include
Computational medical imaging: acquisition, reconstruction and analysis of imaging data, with emphasis on regularized linear inverse problems (compressed sensing, convex optimization). Applications to medical imaging: diffusion MRI, ultrasound imaging, inverse planning in radiotherapy, etc.Computer vision & machine learning: image and video analysis, with application to facial expression recognition, eye tracking, lip reading, industrial inspection, medical image analysis, etc.
Rolf GruetterAwards:
1999 Young Investigator Award Plenary Lectureship
, International Society for Neurochemistry
2011 Fellow
, ESMRMB
2011 Teaching Award
, Section Sciences de la Vie, EPFL
Sean Lewis HillSean Hill is co-Director of Blue Brain, a Swiss national brain initiative, where he leads the Neuroinformatics division, based at the Campus Biotech in Geneva, Switzerland. He also directs the Laboratory for the Neural Basis of Brain States at the École Polytechnique Fédérale de Lausanne (EPFL). Dr. Hill served as the Executive Director (2011-2013) and Scientific Director (2014-2016) of the International Neuroinformatics Coordinating Facility (INCF) at the Karolinska Institutet in Stockholm, Sweden. Dr. Hill has extensive experience in building and simulating large-scale models of brain circuitry and has also supervised and led research efforts exploring the principles underlying the structure and dynamics of neocortical and thalamocortical microcircuitry. He currently serves in management and advisory roles on several large-scale clinical informatics initiatives around the world. After completing his Ph.D. in computational neuroscience at the Université de Lausanne, Switzerland, Dr. Hill held postdoctoral positions at The Neurosciences Institute in La Jolla, California and the University of Wisconsin, Madison, then joined the IBM T.J. Watson Research Center where he served as the Project Manager for Computational Neuroscience at Blue Brain until his appointment at the EPFL.