Category

Neural engineering

Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, or enhance neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs (Hetling, 2008). The field of neural engineering draws on the fields of computational neuroscience, experimental neuroscience, neurology, electrical engineering and signal processing of living neural tissue, and encompasses elements from robotics, cybernetics, computer engineering, neural tissue engineering, materials science, and nanotechnology. Prominent goals in the field include restoration and augmentation of human function via direct interactions between the nervous system and artificial devices. Much current research is focused on understanding the coding and processing of information in the sensory and motor systems, quantifying how this processing is altered in the pathological state, and how it can be manipulated through interactions with artificial devices including brain–computer interfaces and neuroprosthetics. Other research concentrates more on investigation by experimentation, including the use of neural implants connected with external technology. Neurohydrodynamics is a division of neural engineering that focuses on hydrodynamics of the neurological system. As neural engineering is a relatively new field, information and research relating to it is comparatively limited, although this is changing rapidly. The first journals specifically devoted to neural engineering, The Journal of Neural Engineering and The Journal of NeuroEngineering and Rehabilitation both emerged in 2004. International conferences on neural engineering have been held by the IEEE since 2003, from 29 April until 2 May 2009 in Antalya, Turkey 4th Conference on Neural Engineering, the 5th International IEEE EMBS Conference on Neural Engineering in April/May 2011 in Cancún, Mexico, and the 6th conference in San Diego, California in November 2013.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related categories (23)
Topics in robotics
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Topics in ethics
Ethics or moral philosophy is a branch of philosophy that "involves systematizing, defending, and recommending concepts of right and wrong behavior". The field of ethics, along with aesthetics, concerns matters of value; these fields comprise the branch of philosophy called axiology. Ethics seeks to resolve questions of human morality by defining concepts such as good and evil, right and wrong, virtue and vice, justice and crime. As a field of intellectual inquiry, moral philosophy is related to the fields of moral psychology, descriptive ethics, and value theory.
Topics in neurology
Neurology (from νεῦρον (neûron), "string, nerve" and the suffix -logia, "study of") is the branch of medicine dealing with the diagnosis and treatment of all categories of conditions and disease involving the nervous system, which comprises the brain, the spinal cord and the peripheral nerves. Neurological practice relies heavily on the field of neuroscience, the scientific study of the nervous system. A neurologist is a physician specializing in neurology and trained to investigate, diagnose and treat neurological disorders.
Show more
Related concepts (24)
Human enhancement
Human enhancement is the natural, artificial, or technological alteration of the human body in order to enhance physical or mental capabilities. Three forms of human enhancement currently exist: reproductive, physical, and mental. Reproductive enhancements include embryo selection by preimplantation genetic diagnosis, cytoplasmictransfer, and in vitro-generated gametes. Physical enhancements include cosmetics (plastic surgery and orthodontics), Drug-induced (doping and performance-enhancing drugs), functional (prosthetics and powered exoskeletons), Medical (implants (e.
Brain–computer interface
A brain–computer interface (BCI), sometimes called a brain–machine interface (BMI) or smartbrain, is a direct communication pathway between the brain's electrical activity and an external device, most commonly a computer or robotic limb. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions. They are often conceptualized as a human–machine interface that skips the intermediary component of the physical movement of body parts, although they also raise the possibility of the erasure of the discreteness of brain and machine.
Neurotechnology
Neurotechnology encompasses any method or electronic device which interfaces with the nervous system to monitor or modulate neural activity. Common design goals for neurotechnologies include using neural activity readings to control external devices such as neuroprosthetics, altering neural activity via neuromodulation to repair or normalize function affected by neurological disorders, or augmenting cognitive abilities. In addition to their therapeutic or commercial uses, neurotechnologies also constitute powerful research tools to advance fundamental neuroscience knowledge.
Show more
Related courses (10)
NX-422: Neural interfaces
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
NX-436: Advanced methods for human neuromodulation
Neuromodulation is an expending field especially in human translational neuroscience and neurotechnology. This course will introduce to different approaches / technologies for neuromodulation, their u
Show more
Related lectures (86)
Non-Invasive Brain Stimulation: Historical Overview and Applications
Covers the history and applications of non-invasive brain stimulation techniques in clinical settings.
Neuralink & Visual Prostheses
Explores the advancements in brain-machine interfaces and visual prostheses, addressing challenges and future prospects.
Neural Engineering: Fundamentals and Applications
Covers neural engineering fundamentals, brain-computer interfaces, neuroprosthetics, and deep brain stimulation for enhancing human function.
Show more
Related publications (739)

Unraveling behavior and cortical signals to guide the development of soft neuroprostheses for auditory restoration and spreading depolarization

Emilie Cornelia Maria Revol

Neuroprostheses have been used clinically for decades, to help restore or preserve brain functions, when pharmaceutical treatments are inefficient. Although great progress in the field has been made over the years to interface with the nervous system, surf ...
EPFL2024

Modeling, fabrication and validation of 3D neural interfaces for peripheral nerves and brain organoids

Outman Akouissi

This thesis presents an extensive exploration of neuroelectronic interfaces, focusing on microfabrication, in silico modeling, and their applications in designing and fabricating devices for neural interfacing. The research encompasses both peripheral nerv ...
EPFL2024

33.3 MiBMI: A 192/512-Channel 2.46mm² Miniaturized Brain-Machine Interface Chipset Enabling 31-Class Brain-to-Text Conversion Through Distinctive Neural Codes

Mahsa Shoaran, Uisub Shin, Gregor Rainer, Mohammad Ali Shaeri, Amitabh Yadav

Recently, cutting-edge brain-machine interfaces (BMIs) have revealed the potential of decoders such as recurrent neural networks (RNNs) in predicting attempted handwriting [1] or speech [2], enabling rapid communication recovery after paralysis. However, c ...
IEEE2024
Show more
Related startups (1)
SensArs Neuroprosthetics Sarl
Active in neuroprosthetics, sensory feedback and chronic pain. SensArs Neuroprosthetics Sarl pioneers neuroprosthetic systems to eliminate chronic pain by restoring sensory feedback for amputees, receiving FDA Breakthrough Device Designation and a EUR3 million grant for its innovative approach.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.