In particle physics, the radiation length is a characteristic of a material, related to the energy loss of high energy particles electromagnetically interacting with it. It is defined as the mean length (in cm) into the material at which the energy of an electron is reduced by the factor 1/e.
In materials of high atomic number (e.g. tungsten, uranium, plutonium) the electrons of energies >~10 MeV predominantly lose energy by bremsstrahlung, and high-energy photons by pair production. The characteristic amount of matter traversed for these related interactions is called the radiation length X0, usually measured in g·cm−2. It is both the mean distance over which a high-energy electron loses all but of its energy by bremsstrahlung, and of the mean free path for pair production by a high-energy photon. It is also the appropriate length scale for describing high-energy electromagnetic cascades.
The radiation length for a given material consisting of a single type of nucleus can be approximated by the following expression:
where Z is the atomic number and A is mass number of the nucleus.
For Z > 4, a good approximation is
where
n_a is the number density of the nucleus,
denotes the reduced Planck constant,
m_e is the electron rest mass,
c is the speed of light,
α is the fine-structure constant.
For electrons at lower energies (below few tens of MeV), the energy loss by ionization is predominant.
While this definition may also be used for other electromagnetic interacting particles beyond leptons and photons, the presence of the stronger hadronic and nuclear interaction makes it a far less interesting characterisation of the material; the nuclear collision length and nuclear interaction length are more relevant.
Comprehensive tables for radiation lengths and other properties of materials are available from the Particle Data Group.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course will cover the physics of particle detectors. It will introduce the experimental techniques used in nuclear and particle physics. The lecture includes the interaction of particles with matt
The linear attenuation coefficient, attenuation coefficient, or narrow-beam attenuation coefficient characterizes how easily a volume of material can be penetrated by a beam of light, sound, particles, or other energy or matter. A coefficient value that is large represents a beam becoming 'attenuated' as it passes through a given medium, while a small value represents that the medium had little effect on loss. The SI unit of attenuation coefficient is the reciprocal metre (m−1).
In physics, the attenuation length or absorption length is the distance λ into a material when the probability has dropped to 1/e that a particle has not been absorbed. Alternatively, if there is a beam of particles incident on the material, the attenuation length is the distance where the intensity of the beam has dropped to 1/e, or about 63% of the particles have been stopped. Mathematically, the probability of finding a particle at depth x into the material is calculated by the Beer–Lambert law: In general λ is material- and energy-dependent.
In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a result of one or more successive collisions with other particles. Imagine a beam of particles being shot through a target, and consider an infinitesimally thin slab of the target (see the figure). The atoms (or particles) that might stop a beam particle are shown in red.
This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, whi ...
EPFL2015
, , ,
In this study we investigated the effect of medial temporal lobe epilepsy (MTLE) on the global characteristics of brain connectivity estimated by topological measures. We used DSI (Diffusion Spectrum Imaging) to construct a connectivity matrix where the no ...