A logarithmic scale (or log scale) is a way of displaying numerical data over a very wide range of values in a compact way. As opposed to a linear number line in which every unit of distance corresponds to adding by the same amount, on a logarithmic scale, every unit of length corresponds to multiplying the previous value by the same amount. Hence, such a scale is nonlinear: the numbers 1, 2, 3, 4, 5, and so on, are not equally spaced. Rather, the numbers 10, 100, 1000, 10000, and 100000 would be equally spaced. Likewise, the numbers 2, 4, 8, 16, 32, and so on, would be equally spaced. Often exponential growth curves are displayed on a log scale, otherwise they would increase too quickly to fit within a small graph. The markings on slide rules are arranged in a log scale for multiplying or dividing numbers by adding or subtracting lengths on the scales. The following are examples of commonly used logarithmic scales, where a larger quantity results in a higher value: Richter magnitude scale and moment magnitude scale (MMS) for strength of earthquakes and movement in the Earth Sound level, with units decibel Neper for amplitude, field and power quantities Frequency level, with units cent, minor second, major second, and octave for the relative pitch of notes in music Logit for odds in statistics Palermo Technical Impact Hazard Scale Logarithmic timeline Counting f-stops for ratios of photographic exposure The rule of nines used for rating low probabilities Entropy in thermodynamics Information in information theory Particle size distribution curves of soil The following are examples of commonly used logarithmic scales, where a larger quantity results in a lower (or negative) value: pH for acidity Stellar magnitude scale for brightness of stars Krumbein scale for particle size in geology Absorbance of light by transparent samples Some of our senses operate in a logarithmic fashion (Weber–Fechner law), which makes logarithmic scales for these input quantities especially appropriate.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (12)
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
PHYS-117: Physics lab (metrology)
Ce cours est une introduction pratique aux techniques de mesure classiques d'un laboratoire de physique ayant pour but de familiariser les étudiants avec l'acquisition de données, les capteurs, l'anal
EE-556: Mathematics of data: from theory to computation
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Show more
Related lectures (93)
Polynomial, Exponential, Logarithmic Functions
Covers polynomial, exponential, and logarithmic functions, differentiability, compositions, and limits.
Discrete Synthesis Theory
Explores discrete synthesis theory, analog synthesis, correcting distortions, setting constants, and shaping signals through loop sculpture.
Sketching Ratio of Polynomials
Covers sketching ratio of polynomials on a log-scale and Bode plots of continuous-time systems.
Show more
Related publications (35)
Related concepts (17)
Decade (log scale)
One decade (symbol dec) is a unit for measuring ratios on a logarithmic scale, with one decade corresponding to a ratio of 10 between two numbers. Scientific notation When a real number like .007 is denoted alternatively by 7.0 × 10—3 then it is said that the number is represented in scientific notation. More generally, to write a number in the form a × 10b, where 1 < a < 10 and b is an integer, is to express it in scientific notation, and a is called the significand or the mantissa, and b is its exponent.
Hartley (unit)
The hartley (symbol Hart), also called a ban, or a dit (short for decimal digit), is a logarithmic unit that measures information or entropy, based on base 10 logarithms and powers of 10. One hartley is the information content of an event if the probability of that event occurring is . It is therefore equal to the information contained in one decimal digit (or dit), assuming a priori equiprobability of each possible value. It is named after Ralph Hartley.
Decibel
The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a power ratio of 101/10 (approximately 1.26) or root-power ratio of 10 (approximately 1.12). The unit expresses a relative change or an absolute value. In the latter case, the numeric value expresses the ratio of a value to a fixed reference value; when used in this way, the unit symbol is often suffixed with letter codes that indicate the reference value.
Show more
Related MOOCs (2)
Trigonometric Functions, Logarithms and Exponentials
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Trigonometric Functions, Logarithms and Exponentials
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.