Résumé
Une échelle logarithmique est un système de graduation en progression géométrique. Chaque pas multiplie la valeur par une constante positive. De ce fait, la position sur l'axe d'une valeur est proportionnelle à son logarithme. Une échelle logarithmique est particulièrement adaptée pour rendre compte des ordres de grandeur dans les applications. Elle montre sur un petit espace une large gamme de valeurs, à condition qu'elles soient non nulles et de même signe. Les échelles logarithmiques servent soit pour effectuer des calculs analogiques, soit pour présenter des résultats sur des graphiques. L'échelle logarithmique place les valeurs sur l'axe en croissance exponentielle. Des points écartés d'une même distance représentent des valeurs dans le même rapport. L'échelle logarithmique n'est définie que pour des valeurs strictement positives. L'illustration ci-dessus montre les deux types d'échelles : Avec l'échelle linéaire, deux graduations dont la différence vaut 10 sont à distance constante. Avec l'échelle logarithmique, deux graduations dont le rapport vaut 10 sont à distance constante. Sur l'échelle logarithmique, les grands nombres sont comprimés, rapprochés de 1 et facilement représentés, tandis que les nombres inférieurs à 1 sont dilatés et très vite renvoyés vers l'infini négatif. On utilise parfois des unités logarithmiques, c'est-à-dire dont la valeur est le logarithme du rapport entre deux valeurs d'une grandeur. La base logarithmique choisie dépend des habitudes de la discipline qui les utilise : le logarithme népérien, dont la base est e, facilite certains calculs et s'évalue plus directement grâce à la série de Taylor, mais ne permet pas d'accéder intuitivement à l'ordre de grandeur décimal. Le néper est le logarithme népérien du rapport entre deux puissances. logarithme décimal (base 10) donne directement une notion de l'ordre de grandeur, puisque la caractéristique, c'est-à-dire le signe et la partie avant la virgule, le donne directement. Sa lisibilité le rend utile dans de nombreux domaines technologiques, bien que sous une forme modifiée.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.