Optical communication, also known as optical telecommunication, is communication at a distance using light to carry information. It can be performed visually or by using electronic devices. The earliest basic forms of optical communication date back several millennia, while the earliest electrical device created to do so was the photophone, invented in 1880.
An optical communication system uses a transmitter, which encodes a message into an optical signal, a channel, which carries the signal to its destination, and a receiver, which reproduces the message from the received optical signal. When electronic equipment is not employed the 'receiver' is a person visually observing and interpreting a signal, which may be either simple (such as the presence of a beacon fire) or complex (such as lights using color codes or flashed in a Morse code sequence).
Modern communication relies on optical networking systems using optical fiber, optical amplifiers, lasers, switches, routers, and other related technologies. Free-space optical communication use lasers to transmit signals in space, while terrestrial forms are naturally limited by geography and weather. This article provides a basic introduction to different forms of optical communication.
Visual techniques such as smoke signals, beacon fires, hydraulic telegraphs, ship flags and semaphore lines were the earliest forms of optical communication. Hydraulic telegraph semaphores date back to the 4th century BCE Greece. Distress flares are still used by mariners in emergencies, while lighthouses and navigation lights are used to communicate navigation hazards.
The heliograph uses a mirror to reflect sunlight to a distant observer. When a signaler tilts the mirror to reflect sunlight, the distant observer sees flashes of light that can be used to transmit a prearranged signaling code. Naval ships often use signal lamps and Morse code in a similar way.
Aircraft pilots often use visual approach slope indicator (VASI) projected light systems to land safely, especially at night.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The physics of optical communication components and their applications to communication systems will be covered. The course is intended to present the operation principles of contemporary optical comm
This course gives an introduction to Lasers by both considering fundamental principles and applications. Topics that are covered include the theory of lasers, laser resonators and laser dynamics.
In
Introduction aux concepts de base de l'optique classique et moderne. Les étudiants acquièrent des outils pour comprendre et analyser les phénomènes optiques et pour pouvoir concevoir des systèmes opti
Explores bit error rate and receiver sensitivity in optical communication systems, covering BER, receiver sensitivity, probability density functions, and error probability calculations.
The photophone is a telecommunications device that allows transmission of speech on a beam of light. It was invented jointly by Alexander Graham Bell and his assistant Charles Sumner Tainter on February 19, 1880, at Bell's laboratory at 1325 L Street in Washington, D.C. Both were later to become full associates in the Volta Laboratory Association, created and financed by Bell. On June 3, 1880, Bell's assistant transmitted a wireless voice telephone message from the roof of the Franklin School to the window of Bell's laboratory, some 213 meters (about 700 ft.
Free-space optical communication (FSO) is an optical communication technology that uses light propagating in free space to wirelessly transmit data for telecommunications or computer networking. "Free space" means air, outer space, vacuum, or something similar. This contrasts with using solids such as optical fiber cable. The technology is useful where the physical connections are impractical due to high costs or other considerations. Optical communications, in various forms, have been used for thousands of years.
Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.
A new scintillator based fast -ion loss detector (FILD) system has been designed for the Wendelstein 7-X (W7X) stellarator. The mechanical design of the system is presented here along with engineering analyses of the system. This includes an assessment of ...
Dry liquid crystal marbles are structures that consist of cholesteric liquid crystal (CLC) droplets prepared by the mixture of chiral-doped thermotropic LCs encapsulated by cellulose nanocrystals (CNCs) that have been dried under ambient conditions. The ch ...
Quantum ghost imaging can be an important tool in making optical measurements. One of the most useful aspects of ghost imaging is the unique ability to correlate two sets of independently collected information. We aim to use the principles of ghost imaging ...