In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-particle interactions within the lattice.
In nuclear physics, random matrices were introduced by Eugene Wigner to model the nuclei of heavy atoms. Wigner postulated that the spacings between the lines in the spectrum of a heavy atom nucleus should resemble the spacings between the eigenvalues of a random matrix, and should depend only on the symmetry class of the underlying evolution. In solid-state physics, random matrices model the behaviour of large disordered Hamiltonians in the mean-field approximation.
In quantum chaos, the Bohigas–Giannoni–Schmit (BGS) conjecture asserts that the spectral statistics of quantum systems whose classical counterparts exhibit chaotic behaviour are described by random matrix theory.
In quantum optics, transformations described by random unitary matrices are crucial for demonstrating the advantage of quantum over classical computation (see, e.g., the boson sampling model). Moreover, such random unitary transformations can be directly implemented in an optical circuit, by mapping their parameters to optical circuit components (that is beam splitters and phase shifters).
Random matrix theory has also found applications to the chiral Dirac operator in quantum chromodynamics, quantum gravity in two dimensions, mesoscopic physics, spin-transfer torque, the fractional quantum Hall effect, Anderson localization, quantum dots, and superconductors
In multivariate statistics, random matrices were introduced by John Wishart, who sought to estimate covariance matrices of large samples. Chernoff-, Bernstein-, and Hoeffding-type inequalities can typically be strengthened when applied to the maximal eigenvalue (i.e.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Wigner semicircle distribution, named after the physicist Eugene Wigner, is the probability distribution on [−R, R] whose probability density function f is a scaled semicircle (i.e., a semi-ellipse) centered at (0, 0): for −R ≤ x ≤ R, and f(x) = 0 if |x| > R. The parameter R is commonly referred to as the "radius" parameter of the distribution. The Wigner distribution also coincides with a scaled beta distribution. That is, if Y is a beta-distributed random variable with parameters α = β = 3/2, then the random variable X = 2RY – R exhibits a Wigner semicircle distribution with radius R.
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson ('pwɑːsɒn; pwasɔ̃). The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume.
In statistics, the Wishart distribution is a generalization to multiple dimensions of the gamma distribution. It is named in honor of John Wishart, who first formulated the distribution in 1928. Other names include Wishart ensemble (in random matrix theory, probability distributions over matrices are usually called "ensembles"), or Wishart–Laguerre ensemble (since its eigenvalue distribution involve Laguerre polynomials), or LOE, LUE, LSE (in analogy with GOE, GUE, GSE).
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The course introduces modern methods to acquire, clean, and analyze large quantities of financial data efficiently. The second part expands on how to apply these techniques and robust statistics to fi
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...