Flyweight patternIn computer programming, the flyweight software design pattern refers to an object that minimizes memory usage by sharing some of its data with other similar objects. The flyweight pattern is one of twenty-three well-known GoF design patterns. These patterns promote flexible object-oriented software design, which is easier to implement, change, test, and reuse. In other contexts, the idea of sharing data structures is called hash consing.
Strategy patternIn computer programming, the strategy pattern (also known as the policy pattern) is a behavioral software design pattern that enables selecting an algorithm at runtime. Instead of implementing a single algorithm directly, code receives run-time instructions as to which in a family of algorithms to use. Strategy lets the algorithm vary independently from clients that use it. Strategy is one of the patterns included in the influential book Design Patterns by Gamma et al.
Object-oriented programmingObject-Oriented Programming (OOP) is a programming paradigm based on the concept of "objects", which can contain data and code. The data is in the form of fields (often known as attributes or properties), and the code is in the form of procedures (often known as methods). A common feature of objects is that procedures (or methods) are attached to them and can access and modify the object's data fields. In this brand of OOP, there is usually a special name such as or used to refer to the current object.
Visitor patternA visitor pattern is a software design pattern and separates the algorithm from the object structure. Because of this separation new operations can be added to existing object structures without modifying the structures. It is one way to follow the open/closed principle in object-oriented programming and software engineering. In essence, the visitor allows adding new virtual functions to a family of classes, without modifying the classes. Instead, a visitor class is created that implements all of the appropriate specializations of the virtual function.
Software architectureSoftware architecture is the set of structures needed to reason about a software system and the discipline of creating such structures and systems. Each structure comprises software elements, relations among them, and properties of both elements and relations. The architecture of a software system is a metaphor, analogous to the architecture of a building. It functions as the blueprints for the system and the development project, which project management can later use to extrapolate the tasks necessary to be executed by the teams and people involved.
Observer patternIn software design and engineering, the observer pattern is a software design pattern in which an object, named the subject, maintains a list of its dependents, called observers, and notifies them automatically of any state changes, usually by calling one of their methods. It is often used for implementing distributed event-handling systems in event-driven software. In such systems, the subject is usually named a "stream of events" or "stream source of events" while the observers are called "sinks of events.
Design patternA design pattern is the re-usable form of a solution to a design problem. The idea was introduced by the architect Christopher Alexander and has been adapted for various other disciplines, particularly software engineering. An organized collection of design patterns that relate to a particular field is called a pattern language. This language gives a common terminology for discussing the situations designers are faced with. The elements of this language are entities called patterns.
Iterator patternIn object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled. For example, the hypothetical algorithm SearchForElement can be implemented generally using a specified type of iterator rather than implementing it as a container-specific algorithm.
Code refactoringIn computer programming and software design, code refactoring is the process of restructuring existing computer code—changing the factoring—without changing its external behavior. Refactoring is intended to improve the design, structure, and/or implementation of the software (its non-functional attributes), while preserving its functionality. Potential advantages of refactoring may include improved code readability and reduced complexity; these can improve the source codes maintainability and create a simpler, cleaner, or more expressive internal architecture or object model to improve extensibility.
Associative arrayIn computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays.