In mathematics, a Niemeier lattice is one of the 24
positive definite even unimodular lattices of rank 24,
which were classified by . gave a simplified proof of the classification. In the 1970s, has a sentence mentioning that he found more than 10 such lattices in the 1940s, but gives no further details. One example of a Niemeier lattice is the Leech lattice found in 1967.
Niemeier lattices are usually labelled by the Dynkin diagram of their
root systems. These Dynkin diagrams have rank either 0 or 24, and all of their components have the same Coxeter number. (The Coxeter number, at least in these cases, is
the number of roots divided by the dimension.) There are exactly 24 Dynkin diagrams with these properties, and there turns out to be a unique Niemeier
lattice for each of these Dynkin diagrams.
The complete list of Niemeier lattices is given in the following table.
In the table,
G0 is the order of the group generated by reflections
G1 is the order of the group of automorphisms fixing all components of the Dynkin diagram
G2 is the order of the group of automorphisms of permutations of components of the Dynkin diagram
G∞ is the index of the root lattice in the Niemeier lattice, in other words, the order of the "glue code". It is the square root of the discriminant of the root lattice.
G0×G1×G2 is the order of the automorphism group of the lattice
G∞×G1×G2 is the order of the automorphism group of the corresponding deep hole.
If L is an odd unimodular lattice of dimension 8n and M its sublattice of even vectors, then M is contained in exactly 3 unimodular lattices, one of which is L and the other two of which are even. (If L has a norm 1 vector then the two even lattices are isomorphic.) The Kneser neighborhood graph in 8n dimensions has a point for each even lattice, and a line joining two points for each odd 8n dimensional lattice with no norm 1 vectors, where the vertices of each line are the two even lattices associated to the odd lattice. There may be several lines between the same pair of vertices, and there may be lines from a vertex to itself.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by . It may also have been discovered (but not published) by Ernst Witt in 1940. The Leech lattice Λ24 is the unique lattice in 24-dimensional Euclidean space, E24, with the following list of properties: It is unimodular; i.e., it can be generated by the columns of a certain 24×24 matrix with determinant 1. It is even; i.e.
This data set provides a computer-assisted proof for the kernel inequalities needed to prove universal optimality in the paper "Universal optimality of the E_8 and Leech lattices and interpolation formulas" (by Cohn, Kumar, Miller, Radchenko, and Viazovska ...
Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...
EPFL2024
The calculations performed for the design and operation of a Nuclear Power Plant (NPP) are a key factor for their safety analyses. The standard for the computational analysis of NPPs is the so called conventional approach, which relies on coarse mesh diffu ...