**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Extremal Lattices

Description

This lecture delves into extremal lattices, focusing on even unimodular lattices in RD. The instructor clarifies the data function, transformation rules, and the impossibility of odd multiple of four lattices. The discussion extends to modular forms, character definitions, and the uniqueness of extremal modular forms. The proof of Ziegel's theorem is presented, showcasing the bound on the shortest vector in extremal lattices. The lecture concludes with insights into sphere packings, density computations, and the finite existence of extremal even unimodular lattices in specific dimensions.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

MATH-511: Modular forms and applications

In this course we will introduce core concepts of the theory of modular forms and consider several applications of this theory to combinatorics, harmonic analysis, and geometric optimization.

Related concepts (17)

Unimodular lattice

In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E8 lattice and the Leech lattice are two famous examples. A lattice is a free abelian group of finite rank with a symmetric bilinear form (·, ·). The lattice is integral if (·,·) takes integer values. The dimension of a lattice is the same as its rank (as a Z-module).

Modular curve

In number theory and algebraic geometry, a modular curve Y(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curves X(Γ) which are compactifications obtained by adding finitely many points (called the cusps of Γ) to this quotient (via an action on the extended complex upper-half plane).

Modular group

In mathematics, the modular group is the projective special linear group of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and −A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic. The modular group Γ is the group of linear fractional transformations of the upper half of the complex plane, which have the form where a, b, c, d are integers, and ad − bc = 1.

Sphere packing

In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions (where the problem becomes circle packing in two dimensions, or hypersphere packing in higher dimensions) or to non-Euclidean spaces such as hyperbolic space.

Modular form

In mathematics, a modular form is a (complex) analytic function on the upper half-plane that satisfies: a kind of functional equation with respect to the group action of the modular group, and a growth condition. The theory of modular forms therefore belongs to complex analysis. The main importance of the theory is its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory.