In optics, polarized light can be described using the Jones calculus, discovered by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarization of the emerging light is found by taking the product of the Jones matrix of the optical element and the Jones vector of the incident light.
Note that Jones calculus is only applicable to light that is already fully polarized. Light which is randomly polarized, partially polarized, or incoherent must be treated using Mueller calculus.
The Jones vector describes the polarization of light in free space or another homogeneous isotropic non-attenuating medium, where the light can be properly described as transverse waves. Suppose that a monochromatic plane wave of light is travelling in the positive z-direction, with angular frequency ω and wave vector k = (0,0,k), where the wavenumber k = ω/c. Then the electric and magnetic fields E and H are orthogonal to k at each point; they both lie in the plane "transverse" to the direction of motion. Furthermore, H is determined from E by 90-degree rotation and a fixed multiplier depending on the wave impedance of the medium. So the polarization of the light can be determined by studying E. The complex amplitude of E is written
Note that the physical E field is the real part of this vector; the complex multiplier serves up the phase information. Here is the imaginary unit with .
The Jones vector is
Thus, the Jones vector represents the amplitude and phase of the electric field in the x and y directions.
The sum of the squares of the absolute values of the two components of Jones vectors is proportional to the intensity of light. It is common to normalize it to 1 at the starting point of calculation for simplification. It is also common to constrain the first component of the Jones vectors to be a real number. This discards the overall phase information that would be needed for calculation of interference with other beams.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.
In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and is rotating at a constant rate in a plane perpendicular to the direction of the wave. In electrodynamics, the strength and direction of an electric field is defined by its electric field vector. In the case of a circularly polarized wave, the tip of the electric field vector, at a given point in space, relates to the phase of the light as it travels through time and space.
Polarization (also polarisation) is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string.
This class will teach the fundamental concepts regarding materials and their micro-structure, as well as the equilibrium and dynamics of chemical reactions. A link will be made between these concepts
This course addresses the principles governing the interactions between light and biological tissue, their optical properties and basic concepts of radiometry. Illustrative diagnostic and therapeutic
Explores linear and circular polarization of light, Jones vector, elliptical polarization, Poincaré sphere, and Stokes parameters.
Explores the generation, manipulation, and applications of polarized light using techniques like polarizers and wave plates.
Explores birefringence in optics, polarizing light using materials with two refractive indices, and manipulating polarization states with wave plates and retarders.
This code is used for developing the project entitled “Study on conformal antennas, proof of concept prototype for a UAV”, from the aspects of theory, design, and implementation. This code aims to speed up the investigation of an arbitrary phased array ant ...
Zenodo2024
, , ,
The quest to improve transparent conductors balances two key goals: increasing electrical conductivity and increasing optical transparency. To improve both simultaneously is hindered by the physical limitation that good metals with high electrical conducti ...
NATURE PORTFOLIO2023
, ,
A simplified model describing the polarisation characteristics of spun fibres is proposed, aiming at determining how close to a circularly birefringent medium such a fibre is. This is of crucial importance regarding the interest of such a medium for magnet ...