Concept

Optics

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties. Most optical phenomena can be accounted for by using the classical electromagnetic description of light, however complete electromagnetic descriptions of light are often difficult to apply in practice. Practical optics is usually done using simplified models. The most common of these, geometric optics, treats light as a collection of rays that travel in straight lines and bend when they pass through or reflect from surfaces. Physical optics is a more comprehensive model of light, which includes wave effects such as diffraction and interference that cannot be accounted for in geometric optics. Historically, the ray-based model of light was developed first, followed by the wave model of light. Progress in electromagnetic theory in the 19th century led to the discovery that light waves were in fact electromagnetic radiation. Some phenomena depend on light having both wave-like and particle-like properties. Explanation of these effects requires quantum mechanics. When considering light's particle-like properties, the light is modelled as a collection of particles called "photons". Quantum optics deals with the application of quantum mechanics to optical systems. Optical science is relevant to and studied in many related disciplines including astronomy, various engineering fields, photography, and medicine (particularly ophthalmology and optometry, in which it is called physiological optics). Practical applications of optics are found in a variety of technologies and everyday objects, including mirrors, lenses, telescopes, microscopes, lasers, and fibre optics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (53)
BIO-659: Advanced Microscopy for Life Science
For further information, please get in contact with the instructor or have a look on the following web-site: http://biop.epfl.ch/
CH-413: Nanobiotechnology
This course concerns modern bioanalytical techniques to investigate biomolecules both in vitro and in vivo, including recent methods to image, track and manipulate single molecules. We cover the basic
MICRO-443: Conceptual design of products and systems
"Reverse engineering", une activité consistant à étudier un objet pour en déterminer le fonctionnement interne ou la méthode de fabrication. Les étudiants seront capables d'analyser et d'évaluer des p
Show more
Related lectures (197)
Advanced Optics: Fano-Resonant Metasurfaces
Explores Fano-resonant metasurfaces, phase control, spectral range, visible range constraints, anomalous reflection, and color routing.
Trapped Ions: Quantum Gates
Covers the fundamentals of trapped ions in quantum information and the importance of geometric phases in quantum optics.
Optics: Introduction
Introduces geometric, wave, and electromagnetic optics in a series of three courses.
Show more
Related publications (532)

3D diffractive optics for linear interconnects and nonlinear processing

Niyazi Ulas Dinç

The optical domain presents potential avenues for enhancing both computing and communication due to its inherentproperties of bandwidth, parallelism, and energy efficiency. This research focuses on harnessing 3-Dimensional (3D)diffractive optics for novel ...
EPFL2024

Ghost imaging using two SPAD array detectors: a parameter study towards the realization of a 3D quantum microscope

Edoardo Charbon, Claudio Bruschini, Paul Mos, Yang Lin

Quantum ghost imaging can be an important tool in making optical measurements. One of the most useful aspects of ghost imaging is the unique ability to correlate two sets of independently collected information. We aim to use the principles of ghost imaging ...
Spie-Int Soc Optical Engineering2024

Fluorescence microscopy: A statistics-optics perspective

Aleksandra Radenovic

Fundamental properties of light unavoidably impose features on images collected using fluorescence microscopes. Accounting for these features is often critical in quantitatively interpreting microscopy images, especially those gathering information at scal ...
Amer Physical Soc2024
Show more
Related concepts (100)
Fresnel equations
The Fresnel equations (or Fresnel coefficients) describe the reflection and transmission of light (or electromagnetic radiation in general) when incident on an interface between different optical media. They were deduced by Augustin-Jean Fresnel (freɪˈnɛl) who was the first to understand that light is a transverse wave, even though no one realized that the "vibrations" of the wave were electric and magnetic fields.
Ibn al-Haytham
Ḥasan Ibn al-Haytham (Latinized as Alhazen; ælˈhæzən; full name ALA أبو علي، الحسن بن الحسن بن الهيثم; 965-1040) was a medieval mathematician, astronomer, and physicist of the Islamic Golden Age from present-day Iraq. Referred to as "the father of modern optics", he made significant contributions to the principles of optics and visual perception in particular. His most influential work is titled Kitāb al-Manāẓir (Arabic: كتاب المناظر, "Book of Optics"), written during 1011–1021, which survived in a Latin edition.
Jones calculus
In optics, polarized light can be described using the Jones calculus, discovered by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarization of the emerging light is found by taking the product of the Jones matrix of the optical element and the Jones vector of the incident light. Note that Jones calculus is only applicable to light that is already fully polarized.
Show more
Related MOOCs (8)
Introduction to Astrophysics
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Introduction à l'Astrophysique
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Introduction to Astrophysics
Learn about the physical phenomena at play in astronomical objects and link theoretical predictions to observations.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.