Concept

Fenton's reagent

Summary
Fenton's reagent is a solution of hydrogen peroxide (H2O2) and an iron catalyst (typically iron(II) sulfate, FeSO4). It is used to oxidize contaminants or waste water as part of an advanced oxidation process. Fenton's reagent can be used to destroy organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (perchloroethylene, PCE). It was developed in the 1890s by Henry John Horstman Fenton as an analytical reagent. Iron(II) is oxidized by hydrogen peroxide to iron(III), forming a hydroxyl radical and a hydroxide ion in the process. Iron(III) is then reduced back to iron(II) by another molecule of hydrogen peroxide, forming a hydroperoxyl radical and a proton. The net effect is a disproportionation of hydrogen peroxide to create two different oxygen-radical species, with water (H+ + OH−) as a byproduct. The free radicals generated by this process then engage in secondary reactions. For example, the hydroxyl is a powerful, non-selective oxidant. Oxidation of an organic compound by Fenton's reagent is rapid and exothermic and results in the oxidation of contaminants to primarily carbon dioxide and water. Reaction () was suggested by Haber and Weiss in the 1930s as part of what would become the Haber–Weiss reaction. Iron(II) sulfate is typically used as the iron catalyst. The exact mechanisms of the redox cycle are uncertain, and non-OH• oxidizing mechanisms of organic compounds have also been suggested. Therefore, it may be appropriate to broadly discuss Fenton chemistry rather than a specific Fenton reaction. In the electro-Fenton process, hydrogen peroxide is produced in situ from the electrochemical reduction of oxygen. Fenton's reagent is also used in organic synthesis for the hydroxylation of arenes in a radical substitution reaction such as the classical conversion of benzene into phenol. An example hydroxylation reaction involves the oxidation of barbituric acid to alloxane. Another application of the reagent in organic synthesis is in coupling reactions of alkanes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.