In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes. A notable example of a radical is the hydroxyl radical (HO·), a molecule that has one unpaired electron on the oxygen atom. Two other examples are triplet oxygen and triplet carbene (꞉CH2) which have two unpaired electrons. Radicals may be generated in a number of ways, but typical methods involve redox reactions, Ionizing radiation, heat, electrical discharges, and electrolysis are known to produce radicals. Radicals are intermediates in many chemical reactions, more so than is apparent from the balanced equations. Radicals are important in combustion, atmospheric chemistry, polymerization, plasma chemistry, biochemistry, and many other chemical processes. A majority of natural products are generated by radical-generating enzymes. In living organisms, the radicals superoxide and nitric oxide and their reaction products regulate many processes, such as control of vascular tone and thus blood pressure. They also play a key role in the intermediary metabolism of various biological compounds. Such radicals can even be messengers in a process dubbed redox signaling. A radical may be trapped within a solvent cage or be otherwise bound. Radicals are either (1) formed from spin-paired molecules or (2) from other radicals. Radicals are formed from spin-paired molecules through homolysis of weak bonds or electron transfer, also known as reduction. Radicals are formed from other radicals through substitution, addition, and elimination reactions. Homolysis makes two new radicals from a spin-paired molecule by breaking a covalent bond, leaving each of the fragments with one of the electrons in the bond. Because breaking a chemical bond requires energy, homolysis occurs under the addition of heat or light.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (24)
CH-707: Frontiers in Chemical Synthesis. Towards Sustainable Chemistry
This training will empowered the student with all the tools of modern chemistry, which will be highly useful for his potential career as a process or medicinal chemist in industry.
CH-432: Structure and reactivity
To develop a detailed knowledge of the key steps of advanced modern organic synthesis going beyond classical chemistry of olefins and carbonyls.
CH-431: Physical and computational organic chemistry
This course introduces modern computational electronic structure methods and their broad applications to organic chemistry. It also discusses physical organic concepts to illustrate the stability and
Show more
Related lectures (55)
Catalytic Asymmetric Reactions in Organic Chemistry
Explores catalytic asymmetric reactions in organic chemistry, focusing on radical-based approaches and photoredox catalysis.
Tuberculosis: Treatment and Drug Resistance
Explores tuberculosis basics, treatment with antibiotics, and challenges of drug resistance.
Radical Chemistry: Tuberculosis Treatment and Alkane Halogenation
Explores tuberculosis treatment and alkane halogenation, focusing on radical reactions and antibiotic resistance.
Show more
Related publications (420)

New Applications of 1,3,2-Diazaphospholenes in Catalysis

Johannes Klett

The constant urge to construct new molecules in an economical and sustainable fashion led to the development of numerous metal-catalyzed transformations. Organocatalysts consisting of abundant and more sustainable elements offer an elegant solution to over ...
EPFL2024

Charge-Transfer States in Organic Nanowires

Lucile Annie Chassat

Charge separation processes in organic semiconductors play a pivotal role in diverse applications ranging from photovoltaics to photocatalysis. Understanding these mechanisms, particularly the role of hybrid charge-transfer (CT) states, is essential for ad ...
EPFL2024

The Mn(VII)-H2O2 oxidation process: Abatement of electron-deficient N-containing organic compounds

Urs von Gunten, Ke Xu

Chemical oxidants applied in water treatment are electrophiles, which preferentially attack sites with higher electron density. This typically results in less efficient oxidative abatement of organic compounds with electronwithdrawing substituents. In this ...
Lausanne2024
Show more
Related concepts (90)
Spin trapping
Spin trapping is an analytical technique employed in chemistry and biology for the detection and identification of short-lived free radicals through the use of electron paramagnetic resonance (EPR) spectroscopy. EPR spectroscopy detects paramagnetic species such as the unpaired electrons of free radicals. However, when the half-life of radicals is too short to detect with EPR, compounds known as spin traps are used to react covalently with the radical products and form more stable adduct that will also have paramagnetic resonance spectra detectable by EPR spectroscopy.
Reactive nitrogen species
Reactive nitrogen species (RNS) are a family of antimicrobial molecules derived from nitric oxide (•NO) and superoxide (O2•−) produced via the enzymatic activity of inducible nitric oxide synthase 2 (NOS2) and NADPH oxidase respectively. NOS2 is expressed primarily in macrophages after induction by cytokines and microbial products, notably interferon-gamma (IFN-γ) and lipopolysaccharide (LPS). Reactive nitrogen species act together with reactive oxygen species (ROS) to damage cells, causing nitrosative stress.
Allotropes of oxygen
There are several known allotropes of oxygen. The most familiar is molecular oxygen (), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (). Others are: Atomic oxygen (), a free radical. Singlet oxygen (O2*), one of two metastable states of molecular oxygen. Tetraoxygen (), another metastable form. Solid oxygen, existing in six variously colored phases, of which one is octaoxygen (,red oxygen) and another one metallic (ζ-oxygen).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.