**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Gauss's law for gravity

Summary

In physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation. It is named after Carl Friedrich Gauss. It states that the flux (surface integral) of the gravitational field over any closed surface is proportional to the mass enclosed. Gauss's law for gravity is often more convenient to work from than Newton's law.
The form of Gauss's law for gravity is mathematically similar to Gauss's law for electrostatics, one of Maxwell's equations. Gauss's law for gravity has the same mathematical relation to Newton's law that Gauss's law for electrostatics bears to Coulomb's law. This is because both Newton's law and Coulomb's law describe inverse-square interaction in a 3-dimensional space.
Gravitational field
The gravitational field g (also called gravitational acceleration) is a vector field – a vector at each point of space (and time). It is defined so that the gravitational force experienced by a particle is equal to the mass of the particle multiplied by the gravitational field at that point.
Gravitational flux is a surface integral of the gravitational field over a closed surface, analogous to how magnetic flux is a surface integral of the magnetic field.
Gauss's law for gravity states:
The gravitational flux through any closed surface is proportional to the enclosed mass.
The integral form of Gauss's law for gravity states:
where
(also written ) denotes a surface integral over a closed surface,
∂V is any closed surface (the boundary of an arbitrary volume V),
dA is a vector, whose magnitude is the area of an infinitesimal piece of the surface ∂V, and whose direction is the outward-pointing surface normal (see surface integral for more details),
g is the gravitational field,
G is the universal gravitational constant, and
M is the total mass enclosed within the surface ∂V.
The left-hand side of this equation is called the flux of the gravitational field. Note that according to the law it is always negative (or zero), and never positive.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (2)

Related concepts (16)

Related courses (9)

Related publications (33)

Gauss's law for magnetism

In physics, Gauss's law for magnetism is one of the four Maxwell's equations that underlie classical electrodynamics. It states that the magnetic field B has divergence equal to zero, in other words, that it is a solenoidal vector field. It is equivalent to the statement that magnetic monopoles do not exist. Rather than "magnetic charges", the basic entity for magnetism is the magnetic dipole. (If monopoles were ever found, the law would have to be modified, as elaborated below.

Coulomb's law

Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism and maybe even its starting point, as it allowed meaningful discussions of the amount of electric charge in a particle.

Gaussian surface

A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, electric field, or magnetic field. It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.

Related lectures (262)

PHYS-427: Relativity and cosmology I

Introduce the students to general relativity and its classical tests.

PHYS-428: Relativity and cosmology II

This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major

PHYS-201(d): General physics: electromagnetism

The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.

Electric Fields Boundary Conditions: Gauss's Law and Displacement Vector

Explores Gauss's law, displacement vector in dielectrics, and symmetry analysis of electric fields.

Electric Field Strength Outside Conductors

Explores electric field strength outside conductors and geometry-dependent capacitance applications, including pressure sensors and energy storage.

Paradoxes with Coulomb's and Ampère's forces. Gauss's Law

Delves into paradoxes with Coulomb's and Ampère's forces, leading to the derivation of Gauss's Law from Maxwell's equations.

Kyriakos Papadodimas, Alexandre Mathieu Frédéric Belin

Within the AdS/CFT correspondence, we identify a class of CFT operators which represent diff-invariant and approximately local observables in the gravitational dual. Provided that the bulk state breaks all asymptotic symmetries, we show that these operator ...

Frédéric Mila, Karlo Penc, Pierre Marcel Nataf, Miklos Lajko, Carolin Boos

We provide numerical evidence in favor of spontaneous chiral symmetry breaking and the concomitant appearance of an Abelian chiral spin liquid for three-component fermions on the triangular lattice described by an SU(3) symmetric Hubbard model with hopping ...

Davide Scaramuzza, Christian Pfeiffer, Leyla Loued-Khenissi

Does gravity affect decision-making? This question comes into sharp focus as plans for interplanetary human space missions solidify. In the framework of Bayesian brain theories, gravity encapsulates a strong prior, anchoring agents to a reference frame via ...