A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, electric field, or magnetic field. It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of gravitational mass as the source of the gravitational field or amount of electric charge as the source of the electrostatic field, or vice versa: calculate the fields for the source distribution.
For concreteness, the electric field is considered in this article, as this is the most frequent type of field the surface concept is used for.
Gaussian surfaces are usually carefully chosen to exploit symmetries of a situation to simplify the calculation of the surface integral. If the Gaussian surface is chosen such that for every point on the surface the component of the electric field along the normal vector is constant, then the calculation will not require difficult integration as the constants which arise can be taken out of the integral. It is defined as the closed surface in three dimensional space by which the flux of vector field be calculated.
Charge density
Most calculations using Gaussian surfaces begin by implementing Gauss's law (for electricity):
Thereby Q_enc is the electrical charge enclosed by the Gaussian surface.
This is Gauss's law, combining both the divergence theorem and Coulomb's law.
A spherical Gaussian surface is used when finding the electric field or the flux produced by any of the following:
a point charge
a uniformly distributed spherical shell of charge
any other charge distribution with spherical symmetry
The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation. It is named after Carl Friedrich Gauss. It states that the flux (surface integral) of the gravitational field over any closed surface is proportional to the mass enclosed. Gauss's law for gravity is often more convenient to work from than Newton's law. The form of Gauss's law for gravity is mathematically similar to Gauss's law for electrostatics, one of Maxwell's equations.
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism and maybe even its starting point, as it allowed meaningful discussions of the amount of electric charge in a particle.
In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it states that the flux of the electric field out of an arbitrary closed surface is proportional to the electric charge enclosed by the surface, irrespective of how that charge is distributed.
Optimal pharmacokinetic (PK) properties of therapeutic monoclonal antibodies (mAbs) are essential to achieve the desired pharmacological benefits in patients. To accomplish this, we followed an approach comprising structure-based mAb charge engineering in ...
The numerical solution of the stepped pressure equilibrium (Hudson et al 2012 Phys. Plasmas 19 112502) requires a fast and robust solver to obtain the Beltrami field in three-dimensional geometry such as stellarators. The spectral method implemented in the ...
IOP PUBLISHING LTD2020
, , , , , ,
Parallel convection and E × B drifts act together to redistribute heat between the strike-points mechanisms is enhanced near the secondary X-point and is shown to dominate over heat in the low field side snowflake minus (LFS SF−). The cumulative heat conve ...