The kilobyte is a multiple of the unit byte for digital information.
The International System of Units (SI) defines the prefix kilo as a multiplication factor of 1000 (103); therefore, one kilobyte is 1000 bytes. The internationally recommended unit symbol for the kilobyte is kB.
In some areas of information technology, particularly in reference to solid-state memory capacity, kilobyte instead typically refers to 1024 (210) bytes. This arises from the prevalence of sizes that are powers of two in modern digital memory architectures, coupled with the coincidence that 210 differs from 103 by less than 2.5%. A kibibyte is defined by IEC 80000-13 as 1024 bytes.
In the International System of Units (SI) the prefix kilo means 1000 (103); therefore, one kilobyte is 1000 bytes. The unit symbol is kB.
This is the definition recommended by the International Electrotechnical Commission (IEC).
This definition, and the related definitions of the prefixes mega (1 000 000), giga (1 000 000 000), etc., are most commonly used for data transfer rates in computer networks, internal bus, hard drive and flash media transfer speeds, and for the capacities of most storage media, particularly hard drives, flash-based storage, and DVDs. It is also consistent with the other uses of the SI prefixes in computing, such as CPU clock speeds or measures of performance.
The IEC 80000-13 standard uses the term 'byte' to mean eight bits (1 B = 8 bit). Therefore, 1 kB = 8000 bit. One thousand kilobytes (1000 kB) is equal to one megabyte (1 MB), where 1 MB is one million bytes.
The term 'kilobyte' has traditionally been used to refer to 1024 bytes (210 B). The usage of the metric prefix kilo for binary multiples arose as a convenience, because 1024 is approximately 1000.
The binary interpretation of metric prefixes is still prominently used by the Microsoft Windows operating system. Metric prefixes are also used for random-access memory capacity, such as main memory and CPU cache size, due to the prevalent binary addressing of memory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
Les étudiants perfectionnent leurs connaissances en Java et les mettent en pratique en réalisant un projet de taille conséquente. Ils apprennent à utiliser et à mettre en œuvre les principaux types de
Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio
Random-access memory (RAM; ræm) is a form of computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media (such as hard disks, CD-RWs, DVD-RWs and the older magnetic tapes and drum memory), where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.
Microsoft Windows is a group of several proprietary graphical operating system families developed and marketed by Microsoft. Each family caters to a certain sector of the computing industry. For example, Windows NT for consumers, Windows Server for servers, and Windows IoT for embedded systems. Defunct Windows families include Windows 9x, Windows Mobile, and Windows Phone. The first version of Windows was released on November 20, 1985, as a graphical operating system shell for MS-DOS in response to the growing interest in graphical user interfaces (GUIs).
Read-only memory (ROM) is a type of non-volatile memory used in computers and other electronic devices. Data stored in ROM cannot be electronically modified after the manufacture of the memory device. Read-only memory is useful for storing software that is rarely changed during the life of the system, also known as firmware. Software applications (like video games) for programmable devices can be distributed as plug-in cartridges containing ROM.
Non-Volatile Memory (NVM) is an emerging type of memory device that provides fast, byte-addressable, and high-capacity durable storage. NVM sits on the memory bus and allows durable data structures designs similar to the in-memory equivalent ones. Expensiv ...
EPFL2021
, ,
Non-volatile memory (NVM) promises fast, byte-addressable and durable storage, with raw access latencies in the same order of magnitude as DRAM. But in order to take advantage of the durability of NVM, programmers need to design persistent objects which ma ...
2018
, , , , , ,
Logic-compatible gain-cell embedded DRAM (GC-eDRAM) is an emerging alternative to conventional SRAM for memory-dominated system-on-chip (SoC) designs due to its high-density, low-power, and two-ported operation. Although GCs have a limited data retention t ...