Summary
Laser absorption spectrometry (LAS) refers to techniques that use lasers to assess the concentration or amount of a species in gas phase by absorption spectrometry (AS). Optical spectroscopic techniques in general, and laser-based techniques in particular, have a great potential for detection and monitoring of constituents in gas phase. They combine a number of important properties, e.g. a high sensitivity and a high selectivity with non-intrusive and remote sensing capabilities. Laser absorption spectrometry has become the foremost used technique for quantitative assessments of atoms and molecules in gas phase. It is also a widely used technique for a variety of other applications, e.g. within the field of optical frequency metrology or in studies of light matter interactions. The most common technique is tunable diode laser absorption spectroscopy (TDLAS) which has become commercialized and is used for a variety of applications. The most appealing advantages of LAS is its ability to provide absolute quantitative assessments of species. Its biggest disadvantage is that it relies on a measurement of a small change in power from a high level; any noise introduced by the light source or the transmission through the optical system will deteriorate the sensitivity of the technique. Direct laser absorption spectrometric (DLAS) techniques are therefore often limited to detection of absorbance ~10−3, which is far away from the theoretical shot noise level, which for a single pass DAS technique is in the 10−7 – 10−8 range. This detection limit is insufficient for many types of applications. The detection limit can be improved by (1) reducing the noise, (2) using transitions with larger transition strengths or (3) increasing the effective path length. The first can be achieved by the use of a modulation technique, the second can be obtained by using transitions in unconventional wavelength regions, whereas the third by using external cavities.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (2)
Absorption spectroscopy
Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption varies as a function of frequency, and this variation is the absorption spectrum. Absorption spectroscopy is performed across the electromagnetic spectrum.
Spectroscopy
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO).
Related courses (24)
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
CH-448: Photomedicine
The most important clinical diagnostic and therapeutic applications of light will be described. In addition, this course will address the principles governing the interactions between light and biolog
ME-301: Measurement techniques
Theoretical and practical course on experimental techniques for observation and measurement of physical variables such as force, strain, temperature, flow velocity, structural deformation and vibratio
Show more