In mathematics, the well-ordering principle states that every non-empty set of positive integers contains a least element. In other words, the set of positive integers is well-ordered by its "natural" or "magnitude" order in which precedes if and only if is either or the sum of and some positive integer (other orderings include the ordering ; and ). The phrase "well-ordering principle" is sometimes taken to be synonymous with the "well-ordering theorem". On other occasions it is understood to be the proposition that the set of integers contains a well-ordered subset, called the natural numbers, in which every nonempty subset contains a least element. Depending on the framework in which the natural numbers are introduced, this (second-order) property of the set of natural numbers is either an axiom or a provable theorem. For example: In Peano arithmetic, second-order arithmetic and related systems, and indeed in most (not necessarily formal) mathematical treatments of the well-ordering principle, the principle is derived from the principle of mathematical induction, which is itself taken as basic. Considering the natural numbers as a subset of the real numbers, and assuming that we know already that the real numbers are complete (again, either as an axiom or a theorem about the real number system), i.e., every bounded (from below) set has an infimum, then also every set of natural numbers has an infimum, say . We can now find an integer such that lies in the half-open interval , and can then show that we must have , and in . In axiomatic set theory, the natural numbers are defined as the smallest inductive set (i.e., set containing 0 and closed under the successor operation). One can (even without invoking the regularity axiom) show that the set of all natural numbers such that " is well-ordered" is inductive, and must therefore contain all natural numbers; from this property one can conclude that the set of all natural numbers is also well-ordered.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.