**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# On some algebraic and extremal problems in discrete geometry

Abstract

In the present thesis, we delve into different extremal and algebraic problems arising from combinatorial geometry. Specifically, we consider the following problems. For any integer $n\ge 3$, we define $e(n)$ to be the minimum positive integer such that any set of $e(n)$ points in general position in the plane contains $n$ points in convex position. In 1935, Erd\H{o}s and Szekeres proved that $e(n) \le {2n-4 \choose n-2}+1$ and later in 1961, they obtained the lower bound $2^{n-2}+1 \le e(n)$, which they conjectured to be optimal. We prove that $e(n) \le {2n-5 \choose n-2}-{2n-8 \choose n-3}+2$. In a recent breakthrough, Suk proved that $e(n) \le 2^{n+O\left(n^{2/3}\log n\right)}$. We strengthen this result by extending it to pseudo-configurations and also improving the error term. Combining our results with a theorem of Dobbins et al., we significantly improve the best known upper bounds on the following two functions, introduced by Bisztriczky and Fejes T'{o}th and by Pach and T'{o}th, respectively. Let $c(n)$ (and $c'(n)$) denote the smallest positive integer $N$ such that any family of $N$ pairwise disjoint convex bodies in general position (resp., $N$ convex bodies in general position, any pair of which share at most two boundary points) has an $n$ members in convex position. We show that $c(n)\le c'(n)\le 2^{n+O\left(\sqrt{n\log n}\right)}$. Given a point set $P$ in the plane, an ordinary circle for $P$ is defined as a circle containing exactly three points of $P$. We prove that any set of $n$ points in the plane, not all on a line or a circle, determines at least $\frac{1}{4}n^2-O(n)$ ordinary circles. We determine the exact minimum number of ordinary circles for all sufficiently large $n$, and characterize all point sets that come close to this minimum. We also consider the orchard problem for circles, where we determine the maximum number of circles containing four points of a given set and describe the extremal configurations. A special case of the Schwartz-Zippel lemma states that given an algebraic curve $C\subset \mathbb{C}^2$ of degree $d$ and two finite sets $A,B\subset \mathbb{C}$, we have $|C\cap (A\times B)|=O_d(|A|+|B|)$. We establish a two-dimensional version of this result, and prove upper bounds on the size of the intersection $|X\cap (P\times Q)|$ for a variety $X\subset \mathbb{C}^4$ and finite sets $P,Q\subset \mathbb{C}^2$. A key ingredient in our proofs is a two-dimensional version of a special case of Alon's combinatorial Nullstellensatz. As corollaries, we generalize the Szemer'edi-Trotter point-line incidence theorem and several known bounds on repeated and distinct Euclidean distances. We use incidence geometry to prove some sum-product bounds over arbitrary fields. First, we give an explicit exponent and improve a recent result of Bukh and Tsimerman by proving that $\max \{ |A+A|, |f(A, A)|\}\gg |A|^{6/5}$ for any small set $A\subset \mathbb{F}_p$ and quadratic non-degenerate polynomial $f(x, y)\in \mathbb{F}_p[x, y]$. This generalizes the result of Roche-Newton et al. giving the best known lower bound for the term $\max \{ |A+A|, |A \cdot A |\}$. Secondly, we improve and generalize the sum-product results of Hegyv'{a}ri and Hennecart on $\max\{ |A+B|, |f(B,C)|\}$, for a specific type of function $f$. Finally, we prove that the number of distinct cubic distances generated by any small set $A\times A\subset \mathbb{F}_p^2$ is $\Omega(|A|^{8/7})$, which improves a result of Yazici et al.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related concepts (35)

Related MOOCs (28)

Related publications (5)

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Discrete geometry

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

Algebraic curve

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0.

Incidence geometry

In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An incidence structure is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure.

Loading

Loading

Loading

The theory of persistence, which arises from topological data analysis, has been intensively studied in the one-parameter case both theoretically and in its applications. However, its extension to the

In this thesis, we explore possible stabilisation methods for the reduce basis approximation of advection-diffusion problems, for which the advection term is dominating. The options we consider are ma

2016The present thesis deals with problems arising from discrete mathematics, whose proofs make use of tools from algebraic geometry and topology. The thesis is based on four papers that I have co-authore