Pepsin 'pɛpsɪn is an endopeptidase that breaks down proteins into smaller peptides. It is produced in the gastric chief cells of the stomach lining and is one of the main digestive enzymes in the digestive systems of humans and many other animals, where it helps digest the proteins in food. Pepsin is an aspartic protease, using a catalytic aspartate in its active site.
It is one of three principal endopeptidases (enzymes cutting proteins in the middle) in the human digestive system, the other two being chymotrypsin and trypsin. There are also exopeptidases which remove individual amino acids at both ends of proteins (carboxypeptidases produced by the pancreas and aminopeptidases secreted by the small intestine). During the process of digestion, these enzymes, each of which is specialized in severing links between particular types of amino acids, collaborate to break down dietary proteins into their components, i.e., peptides and amino acids, which can be readily absorbed by the small intestine. The cleavage specificity of pepsin is broad, but some amino acids like tyrosine, phenylalanine and tryptophan increase the probability of cleavage.
Pepsin's proenzyme, pepsinogen, is released by the gastric chief cells in the stomach wall, and upon mixing with the hydrochloric acid of the gastric juice, pepsinogen activates to become pepsin.
Pepsin was one of the first enzymes to be discovered, by Theodor Schwann in 1836. Schwann coined its name from the Greek word πέψις pepsis, meaning "digestion" (from πέπτειν peptein "to digest"). An acidic substance that was able to convert nitrogen-based foods into water-soluble material was determined to be pepsin.
In 1928, it became one of the first enzymes to be crystallized when John H. Northrop crystallized it using dialysis, filtration, and cooling.
Pepsin is expressed as a zymogen called pepsinogen, whose primary structure has an additional 44 amino acids compared to the active enzyme.
In the stomach, gastric chief cells release pepsinogen.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & He
Gastric acid, gastric juice, or stomach acid is a digestive fluid formed within the stomach lining. With a pH between 1 and 3, gastric acid plays a key role in digestion of proteins by activating digestive enzymes, which together break down the long chains of amino acids of proteins. Gastric acid is regulated in feedback systems to increase production when needed, such as after a meal. Other cells in the stomach produce bicarbonate, a base, to buffer the fluid, ensuring a regulated pH.
Digestive enzymes are a group of enzymes that break down polymeric macromolecules into their smaller building blocks, in order to facilitate their absorption into the cells of the body. Digestive enzymes are found in the digestive tracts of animals (including humans) and in the tracts of carnivorous plants, where they aid in the digestion of food, as well as inside cells, especially in their lysosomes, where they function to maintain cellular survival.
Parietal cells (also known as oxyntic cells) are epithelial cells in the stomach that secrete hydrochloric acid (HCl) and intrinsic factor. These cells are located in the gastric glands found in the lining of the fundus and body regions of the stomach. They contain an extensive secretory network of canaliculi from which the HCl is secreted by active transport into the stomach. The enzyme hydrogen potassium ATPase (H+/K+ ATPase) is unique to the parietal cells and transports the H+ against a concentration gradient of about 3 million to 1, which is the steepest ion gradient formed in the human body.
Due to its limited regeneration capacity, articular cartilage defects are considered a frequent
clinical problem. Initial cartilage defects, if left untreated, will progress in severity over
time and can eventually lead to degenerative joint diseases such ...
Immunogenic subcellular vesicular particles that can be used to stimulate antigen-specific immune responses in vitro and in vivo are generated from whole cancer cells. The particles retain a broad antigen repertoire similar to that of the parent cells, and ...
Wiley-Blackwell2016
The present invention relates to variants of the GAIN domain (G-protein-coupled receptor autoproteolysis-inducing domain) of an adhesion G protein-coupled receptor (ADGRG), such as a GAIN domain variant comprising or consisting of the amino acid sequence o ...