Summary
In wireless communication, spatial correlation is the correlation between a signal's spatial direction and the average received signal gain. Theoretically, the performance of wireless communication systems can be improved by having multiple antennas at the transmitter and the receiver. The idea is that if the propagation channels between each pair of transmit and receive antennas are statistically independent and identically distributed, then multiple independent channels with identical characteristics can be created by precoding and be used for either transmitting multiple data streams or increasing the reliability (in terms of bit error rate). In practice, the channels between different antennas are often correlated and therefore the potential multi antenna gains may not always be obtainable. In an ideal communication scenario, there is a line-of-sight path between the transmitter and receiver that represents clear spatial channel characteristics. In urban cellular systems, this is seldom the case as base stations are located on rooftops while many users are located either indoors or at streets far from base stations. Thus, there is a non-line-of-sight multipath propagation channel between base stations and users, describing how the signal is reflected at different obstacles on its way from the transmitter to the receiver. However, the received signal may still have a strong spatial signature in the sense that stronger average signal gains are received from certain spatial directions. Spatial correlation means that there is a correlation between the received average signal gain and the angle of arrival of a signal. Rich multipath propagation decreases the spatial correlation by spreading the signal such that multipath components are received from many different spatial directions. Short antenna separations increase the spatial correlation as adjacent antennas will receive similar signal components. The existence of spatial correlation has been experimentally validated.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.