Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In high energy physics, a pseudovector meson or axial vector meson is a meson with total spin 1 and even parity (+) (usually noted as J^ P = 1^+ ). Compare to a vector meson, which has a total spin 1 and odd parity (that is, J^ P = 1^− ). The known pseudovector mesons fall into two different classes, all have even spatial parity ( P = "+" ), but they differ in another kind of parity called charge parity (C) which can be either even (+) or odd (−). The two types of pseudovector meson are: those with odd charge parity J^ PC = 1^+− those with even charge parity J^ PC = 1^++ The 1^+− group has no intrinsic spin excitation ( S = 0 ), but do gain spin from angular momentum ( L = 1 ) of the orbits of the two constituent quarks around their mutual center. The second group (1^++) have both intrinsic spin S = 1 , and L = 1 , with L and S coupling to J = 1 . Pseudovector, or axial vector, mesons in the 1^+− category are most readily be seen in proton‐antiproton annihilation and pion‐nucleon scattering. The mesons in the 1^++ category are normally seen in proton-proton and pion-nucleon scattering. The difference between the two groups gives them slightly different masses, from the spin‐orbit coupling rule. Theoretically, the h and b mesons are in the 1^+− group, and should have heavier masses, according to the spin-orbit mass splitting. However, the measured masses of the mesons do not appear to follow the rule, as evidenced by the f and a mesons being heavier. There are considerable uncertainties in experimental measurement of pseudovector mesons; more experimental data will be needed to confirm and accurately determine the discrepancy between theory and measurement. The 1^++ multiplet of light mesons may show similar behavior to that of other vector mesons, in that the mixing of light quarks with strange quarks appears to be small for this quantum number. The 1^+− multiplet, on the other hand, may be affected by other factors that generally reduce meson masses. Again, further experimentation is required in order to solidify the observations.
Lesya Shchutska, Alexey Boyarsky
Jian Wang, Lesya Shchutska, Olivier Schneider, Yiming Li, Yi Zhang, Aurelio Bay, Guido Haefeli, Christoph Frei, Frédéric Blanc, Tatsuya Nakada, Michel De Cian, François Fleuret, Elena Graverini, Renato Quagliani, Federico Betti, Andrea Merli, Aravindhan Venkateswaran, Luis Miguel Garcia Martin, Vitalii Lisovskyi, Katharina Müller, Sebastian Schulte, Veronica Sølund Kirsebom, Elisabeth Maria Niel, Alexandre Brea Rodriguez, Mingkui Wang, Zhirui Xu, Lei Zhang, Ho Ling Li, Mark Tobin, Minh Tâm Tran, Niko Neufeld, Matthew Needham, Marc-Olivier Bettler, Maurizio Martinelli, Vladislav Balagura, Donal Patrick Hill, Liang Sun, Pietro Marino, Mirco Dorigo, Xiaoxue Han, Liupan An, Federico Leo Redi, Plamen Hristov Hopchev, Thibaud Humair, Maxime Schubiger, Hang Yin, Guido Andreassi, Violaine Bellée, Preema Rennee Pais, Pavol Stefko, Tara Nanut, Maria Elena Stramaglia, Yao Zhou, Tommaso Colombo, Vladimir Macko, Guillaume Max Pietrzyk, Evgenii Shmanin, Simone Meloni, Xiaoqing Zhou, Lino Ferreira Lopes, Surapat Ek-In, Carina Trippl, Sara Celani, Marco Guarise, Serhii Cholak, Dipanwita Dutta, Zheng Wang, Yi Wang, Hans Dijkstra, Gerhard Raven, Peter Clarke, Frédéric Teubert, Giovanni Carboni, Victor Coco, Adam Davis, Paolo Durante, Wenyu Zhang, Yu Zheng, Anton Petrov, Maxim Borisyak, Feng Jiang, Chen Chen, Zhipeng Tang, Xuan Li, Alexey Boldyrev, Almagul Kondybayeva, Hossein Afsharnia
Jian Wang, Olivier Schneider, Yiming Li, Yi Zhang, Aurelio Bay, Guido Haefeli, Christoph Frei, Frédéric Blanc, Tatsuya Nakada, Michel De Cian, Luca Pescatore, François Fleuret, Elena Graverini, Chitsanu Khurewathanakul, Renato Quagliani, Maria Vieites Diaz, Federico Betti, Andrea Merli, Aravindhan Venkateswaran, Luis Miguel Garcia Martin, Vitalii Lisovskyi, Sebastian Schulte, Veronica Sølund Kirsebom, Mingkui Wang, Zhirui Xu, Lei Zhang, Jessica Prisciandaro, Mark Tobin, Minh Tâm Tran, Niko Neufeld, Matthew Needham, Marc-Olivier Bettler, Greig Alan Cowan, Maurizio Martinelli, Vladislav Balagura, Donal Patrick Hill, Liang Sun, Pietro Marino, Mirco Dorigo, Xiaoxue Han, Liupan An, Federico Leo Redi, Plamen Hristov Hopchev, Thibaud Humair, Maxime Schubiger, Hang Yin, Guido Andreassi, Violaine Bellée, Olivier Göran Girard, Axel Kuonen, Preema Rennee Pais, Pavol Stefko, Tara Nanut, Maria Elena Stramaglia, Tommaso Colombo, Vladimir Macko, Guillaume Max Pietrzyk, Evgenii Shmanin, Dipanwita Dutta, Zheng Wang, Yi Wang, Hans Dijkstra, Gerhard Raven, Peter Clarke, Frédéric Teubert, Giovanni Carboni, Victor Coco, Adam Davis, Paolo Durante, Wenyu Zhang, Yu Zheng, Anton Petrov, Maxim Borisyak, Feng Jiang, Chen Chen, Zhipeng Tang