In Euclidean geometry, Varignon's theorem holds that the midpoints of the sides of an arbitrary quadrilateral form a parallelogram, called the Varignon parallelogram. It is named after Pierre Varignon, whose proof was published posthumously in 1731. The midpoints of the sides of an arbitrary quadrilateral form a parallelogram. If the quadrilateral is convex or concave (not complex), then the area of the parallelogram is half the area of the quadrilateral. If one introduces the concept of oriented areas for n-gons, then this area equality also holds for complex quadrilaterals. The Varignon parallelogram exists even for a skew quadrilateral, and is planar whether the quadrilateral is planar or not. The theorem can be generalized to the midpoint polygon of an arbitrary polygon. Referring to the diagram above, triangles ADC and HDG are similar by the side-angle-side criterion, so angles DAC and DHG are equal, making HG parallel to AC. In the same way EF is parallel to AC, so HG and EF are parallel to each other; the same holds for HE and GF. Varignon's theorem can also be proved as a theorem of affine geometry organized as linear algebra with the linear combinations restricted to coefficients summing to 1, also called affine or barycentric coordinates. The proof applies even to skew quadrilaterals in spaces of any dimension. Any three points E, F, G are completed to a parallelogram (lying in the plane containing E, F, and G) by taking its fourth vertex to be E − F + G. In the construction of the Varignon parallelogram this is the point (A + B)/2 − (B + C)/2 + (C + D)/2 = (A + D)/2. But this is the point H in the figure, whence EFGH forms a parallelogram. In short, the centroid of the four points A, B, C, D is the midpoint of each of the two diagonals EG and FH of EFGH, showing that the midpoints coincide. From the first proof, one can see that the sum of the diagonals is equal to the perimeter of the parallelogram formed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (2)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
ME-104: Introduction to structural mechanics
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Related lectures (32)
Structural Mechanics: Systems of Forces
Covers systems of forces, moments, couples, and stress in 2D and 3D, as well as the effect of force-couple systems.
Mechanics: Newton's Laws and Center of Mass
Covers Newton's laws, center of mass, conservation laws, and transfer theorem for angular momentum.
System of Forces in 2D
Covers the concept of forces in 2D, including classification, components, moments, and resultant forces.
Show more
Related concepts (9)
Orthodiagonal quadrilateral
In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other. A kite is an orthodiagonal quadrilateral in which one diagonal is a line of symmetry. The kites are exactly the orthodiagonal quadrilaterals that contain a circle tangent to all four of their sides; that is, the kites are the tangential orthodiagonal quadrilaterals.
Parallelogram law
In mathematics, the simplest form of the parallelogram law (also called the parallelogram identity) belongs to elementary geometry. It states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals. We use these notations for the sides: AB, BC, CD, DA. But since in Euclidean geometry a parallelogram necessarily has opposite sides equal, that is, AB = CD and BC = DA, the law can be stated as If the parallelogram is a rectangle, the two diagonals are of equal lengths AC = BD, so and the statement reduces to the Pythagorean theorem.
Antiparallelogram
In geometry, an antiparallelogram is a type of self-crossing quadrilateral. Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, each pair of sides is antiparallel with respect to the other, with sides in the longer pair crossing each other as in a scissors mechanism. Whereas a parallelogram's opposite angles are equal and oriented the same way, an antiparallelogram's are equal but oppositely oriented.
Show more