In mathematics, the simplest form of the parallelogram law (also called the parallelogram identity) belongs to elementary geometry. It states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals. We use these notations for the sides: AB, BC, CD, DA. But since in Euclidean geometry a parallelogram necessarily has opposite sides equal, that is, AB = CD and BC = DA, the law can be stated as
If the parallelogram is a rectangle, the two diagonals are of equal lengths AC = BD, so
and the statement reduces to the Pythagorean theorem. For the general quadrilateral with four sides not necessarily equal,
where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that for a parallelogram, and so the general formula simplifies to the parallelogram law.
In the parallelogram on the right, let AD = BC = a, AB = DC = b, By using the law of cosines in triangle we get:
In a parallelogram, adjacent angles are supplementary, therefore Using the law of cosines in triangle produces:
By applying the trigonometric identity to the former result proves:
Now the sum of squares can be expressed as:
Simplifying this expression, it becomes:
In a normed space, the statement of the parallelogram law is an equation relating norms:
The parallelogram law is equivalent to the seemingly weaker statement:
because the reverse inequality can be obtained from it by substituting for and for and then simplifying. With the same proof, the parallelogram law is also equivalent to:
In an inner product space, the norm is determined using the inner product:
As a consequence of this definition, in an inner product space the parallelogram law is an algebraic identity, readily established using the properties of the inner product:
Adding these two expressions:
as required.
If is orthogonal to meaning and the above equation for the norm of a sum becomes:
which is Pythagoras' theorem.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector.
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm. The polarization identity shows that a norm can arise from at most one inner product; however, there exist norms that do not arise from any inner product.
Social norms are the understandings that govern the behavior of members of a society. As such, they regulate communication, cooperation and other social interactions. Robots capable of reasoning about social norms are more likely to be recognized as an ext ...
We prove polarization theorems for arbitrary classical-quantum (cq) channels. The input alphabet is endowed with an arbitrary Abelian group operation, and an Anion-style transformation is applied using this operation. It is shown that as the number of pola ...
Social norms are the understandings that govern the behavior of members of a society. As such, they regulate communication, cooperation and other social interactions. Robots capable of reasoning about social norms are more likely to be recognized as an ext ...