Summary
Raney nickel ˈreɪniː_ˈnɪkəl, also called spongy nickel, is a fine-grained solid composed mostly of nickel derived from a nickel–aluminium alloy. Several grades are known, of which most are gray solids. Some are pyrophoric, but most are used as air-stable slurries. Raney nickel is used as a reagent and as a catalyst in organic chemistry. It was developed in 1926 by American engineer Murray Raney for the hydrogenation of vegetable oils. Raney is a registered trademark of W. R. Grace and Company. Other major producers are Evonik and Johnson Matthey. The Ni–Al alloy is prepared by dissolving nickel in molten aluminium followed by cooling ("quenching"). Depending on the Ni:Al ratio, quenching produces a number of different phases. During the quenching procedure, small amounts of a third metal, such as zinc or chromium, are added to enhance the activity of the resulting catalyst. This third metal is called a "promoter". The promoter changes the mixture from a binary alloy to a ternary alloy, which can lead to different quenching and leaching properties during activation. In the activation process, the alloy, usually as a fine powder, is treated with a concentrated solution of sodium hydroxide. The simplified leaching reaction is given by the following chemical equation: 2 Al + 2 NaOH + 6 H2O → 2 Na[Al(OH)4] + 3 H2 The formation of sodium aluminate (Na[Al(OH)4]) requires that solutions of high concentration of sodium hydroxide be used to avoid the formation of aluminium hydroxide, which otherwise would precipitate as bayerite. Hence sodium hydroxide solutions with concentrations of up to 5 M are used. The temperature used to leach the alloy has a marked effect on the properties of the catalyst. Commonly, leaching is conducted between 70 and 100 °C. The surface area of Raney nickel (and related catalysts in general) tends to decrease with increasing leaching temperature. This is due to structural rearrangements within the alloy that may be considered analogous to sintering, where alloy ligaments would start adhering to each other at higher temperatures, leading to the loss of the porous structure.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.