A tumour inducing (Ti) plasmid is a plasmid found in pathogenic species of Agrobacterium, including [[Agrobacterium tumefaciens|A. tumefaciens]], A. rhizogenes, A. rubi and A. vitis.
Evolutionarily, the Ti plasmid is part of a family of plasmids carried by many species of Alphaproteobacteria. Members of this plasmid family are defined by the presence of a conserved DNA region known as the repABC gene cassette, which mediates the replication of the plasmid, the partitioning of the plasmid into daughter cells during cell division as well as the maintenance of the plasmid at low copy numbers in a cell. The Ti plasmids themselves are sorted into different categories based on the type of molecule, or opine, they allow the bacteria to break down as an energy source.
The presence of this Ti plasmid is essential for the bacteria to cause crown gall disease in plants. This is facilitated via certain crucial regions in the Ti plasmid, including the vir region, which encodes for virulence genes, and the transfer DNA (T-DNA) region, which is a section of the Ti plasmid that is transferred via conjugation into host plant cells after an injury site is sensed by the bacteria. These regions have features that allow the delivery of T-DNA into host plant cells, and can modify the host plant cell to cause the synthesis of molecules like plant hormones (e.g. auxins, cytokinins) and opines and the formation of crown gall tumours.
Because the T-DNA region of the Ti plasmid can be transferred from bacteria to plant cells, it represented an exciting avenue for the transfer of DNA between kingdoms and spurred large amounts of research on the Ti plasmid and its possible uses in bioengineering.
The Ti plasmid is a member of the RepABC plasmid family found in Alphaproteobacteria. These plasmids are often relatively large in size, ranging from 100kbp to 2Mbp. They are also often termed replicons, as their replication begins at a single site. Members of this family have a characteristic repABC gene cassette.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les étudiants appliquent des techniques de base en biologie moléculaire pour cloner un cDNA d'intérêt dans un plasmide d'expression afin de produire la protéine correspondante dans des cellules de mam
Agrobacterium is a genus of Gram-negative bacteria established by H. J. Conn that uses horizontal gene transfer to cause tumors in plants. Agrobacterium tumefaciens is the most commonly studied species in this genus. Agrobacterium is well known for its ability to transfer DNA between itself and plants, and for this reason it has become an important tool for genetic engineering. Leading up to the 1990s, the genus Agrobacterium was used as a wastebasket taxon.
Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. This takes place through a pilus. It is a parasexual mode of reproduction in bacteria. It is a mechanism of horizontal gene transfer as are transformation and transduction although these two other mechanisms do not involve cell-to-cell contact. Classical E. coli bacterial conjugation is often regarded as the bacterial equivalent of sexual reproduction or mating since it involves the exchange of genetic material.
In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacterium must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory.
Host attachment is often a critical step in the onset of pathogenesis. To attach to host cells, bacteria have evolved a range of adhesins that bind to specific receptors. Some of these adhesins have been thoroughly characterized using biochemical technique ...
Cholera, caused by the bacterium Vibrio cholerae, has affected humanity throughout history and still impacts millions of people every year. Apart from being a human pathogen, V. cholerae is a common member of the aquatic environment. Due to this natural re ...
Horizontal gene transfer can trigger rapid shifts in bacterial evolution. Driven by a variety of mobile genetic elements—in particular bacteriophages and plasmids—the ability to share genes within and across species underpins the exceptional adaptability o ...