In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacterium must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory. Transformation is one of three processes that lead to horizontal gene transfer, in which exogenous genetic material passes from one bacterium to another, the other two being conjugation (transfer of genetic material between two bacterial cells in direct contact) and transduction (injection of foreign DNA by a bacteriophage virus into the host bacterium). In transformation, the genetic material passes through the intervening medium, and uptake is completely dependent on the recipient bacterium. As of 2014 about 80 species of bacteria were known to be capable of transformation, about evenly divided between Gram-positive and Gram-negative bacteria; the number might be an overestimate since several of the reports are supported by single papers. "Transformation" may also be used to describe the insertion of new genetic material into nonbacterial cells, including animal and plant cells; however, because "transformation" has a special meaning in relation to animal cells, indicating progression to a cancerous state, the process is usually called "transfection". Transformation in bacteria was first demonstrated in 1928 by the British bacteriologist Frederick Griffith. Griffith was interested in determining whether injections of heat-killed bacteria could be used to vaccinate mice against pneumonia. However, he discovered that a non-virulent strain of Streptococcus pneumoniae could be made virulent after being exposed to heat-killed virulent strains. Griffith hypothesized that some "transforming principle" from the heat-killed strain was responsible for making the harmless strain virulent.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
BIO-204: Integrated labo in Life sciences II
Au cours de deux semestres, vous utilisez la biologie moléculaire, la biologie cellulaire ainsi que la biochimie pour cloner un ADNc dans un plasmide d'expression, afin de produire, purifier et caract
BIO-203: Integrated labo in Life sciences I
Au cours de deux semestres, vous utilisez la biologie moléculaire, la biologie cellulaire ainsi que la biochimie pour cloner un ADNc dans un plasmide d'expression, afin de produire, purifier et caract
BIO-684: Hot Topics in Cancer Research
(1) To expose PhD students to cutting-edge research in the field of Cancer Research through attendance of lectures given by world-leading distinguished scientists in the field.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.