In geometry, the Steiner inellipse, midpoint inellipse, or midpoint ellipse of a triangle is the unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. It is an example of an inellipse. By comparison the inscribed circle and Mandart inellipse of a triangle are other inconics that are tangent to the sides, but not at the midpoints unless the triangle is equilateral. The Steiner inellipse is attributed by Dörrie to Jakob Steiner, and a proof of its uniqueness is given by Dan Kalman.
The Steiner inellipse contrasts with the Steiner circumellipse, also called simply the Steiner ellipse, which is the unique ellipse that passes through the vertices of a given triangle and whose center is the triangle's centroid.
Definition
An ellipse that is tangent to the sides of a triangle △ABC at its midpoints is called the Steiner inellipse of △ABC.
Properties:
For an arbitrary triangle △ABC with midpoints of its sides the following statements are true:
a) There exists exactly one Steiner inellipse.
b) The center of the Steiner inellipse is the centroid S of △ABC.
c1) The triangle has the same centroid S and the Steiner inellipse of △ABC is the Steiner ellipse of the triangle
c2) The Steiner inellipse of a triangle is the scaled Steiner Ellipse with scaling factor 1/2 and the centroid as center. Hence both ellipses have the same eccentricity, are similar.
d) The area of the Steiner inellipse is -times the area of the triangle.
e) The Steiner inellipse has the greatest area of all inellipses of the triangle.
Proof
The proofs of properties a),b),c) are based on the following properties of an affine mapping: 1) any triangle can be considered as an affine image of an equilateral triangle. 2) Midpoints of sides are mapped onto midpoints and centroids on centroids. The center of an ellipse is mapped onto the center of its image.
Hence its suffice to prove properties a),b),c) for an equilateral triangle:
a) To any equilateral triangle there exists an incircle. It touches the sides at its midpoints.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions.
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. Suppose A, B, C are distinct non-collinear points, and let △ABC denote the triangle whose vertices are A, B, C. Following common practice, A denotes not only the vertex but also the angle ∠BAC at vertex A, and similarly for B and C as angles in △ABC. Let the sidelengths of △ABC.
In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants).
Time to collision (TTC) is a key indicator of human locomotion, encompassing both pedestrian and vehicular traffic. Applications of the TTC concept span a wide spectrum from safety to traffic flow dynamics. However, there exists no generic formulation for ...
2023
,
Context. We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, w ...
A new DSC-based experimental method to efficiently establish the glass transition temperature, Tg, vs. curing degree, α, relationship for structural adhesives was developed. The method approaches the continuous Tg-α relationship with a trilinear curve esta ...