Machine vision (MV) is the technology and methods used to provide -based automatic inspection and analysis for such applications as automatic inspection, process control, and robot guidance, usually in industry. Machine vision refers to many technologies, software and hardware products, integrated systems, actions, methods and expertise. Machine vision as a systems engineering discipline can be considered distinct from computer vision, a form of computer science. It attempts to integrate existing technologies in new ways and apply them to solve real world problems. The term is the prevalent one for these functions in industrial automation environments but is also used for these functions in other environment vehicle guidance.
The overall machine vision process includes planning the details of the requirements and project, and then creating a solution. During run-time, the process starts with imaging, followed by automated of the image and extraction of the required information.
Definitions of the term "Machine vision" vary, but all include the technology and methods used to extract information from an image on an automated basis, as opposed to , where the output is another image. The information extracted can be a simple good-part/bad-part signal, or more a complex set of data such as the identity, position and orientation of each object in an image. The information can be used for such applications as automatic inspection and robot and process guidance in industry, for security monitoring and vehicle guidance. This field encompasses a large number of technologies, software and hardware products, integrated systems, actions, methods and expertise. Machine vision is practically the only term used for these functions in industrial automation applications; the term is less universal for these functions in other environments such as security and vehicle guidance.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and (either on a video card or embedded on the motherboards, mobile phones, personal computers, workstations, and game consoles). After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.
Image analysis or imagery analysis is the extraction of meaningful information from s; mainly from s by means of techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face. Computers are indispensable for the analysis of large amounts of data, for tasks that require complex computation, or for the extraction of quantitative information.
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
The course gives (1) a review of different types of numerical models of control of locomotion and movement in animals, (2) a presentation of different techniques for designing models, and (3) an analy
Computer Vision aims at modeling the world from digital images acquired using video or infrared cameras, and other imaging sensors.We will focus on images acquired using digital cameras. We will int
The students will gain the theoretical knowledge in computational photography, which allows recording and processing a richer visual experience than traditional digital imaging. They will also execute
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
Poisoning attacks compromise the training data utilized to train machine learning (ML) models, diminishing their overall performance, manipulating predictions on specific test samples, and implanting backdoors. This article thoughtfully explores these atta ...
Digital twins are virtual models of physical objects or systems that enable real-time monitoring and analysis. In the field of stone masonry buildings, digital twins can be used to assess damage, predict maintenance needs, and opti- mize building performanc ...