Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Near-term quantum devices can be used to build quantum machine learning models, such as quantum kernel methods and quantum neural networks (QNN), to perform classification tasks. There have been many proposals on how to use variational quantum circuits as ...
Explaining the mechanism of superconductivity in the high-T-c cuprates requires an understanding of what causes electrons to form Cooper pairs. Pairing can be mediated by phonons, the screened Coulomb force, spin or charge fluctuations, excitons, or by a c ...
Quantum computing holds the promise to solve many of today's intractable problems. A solid-state quantum computer (QC) is generally made of an array of qubits implemented in one of many solid-state technologies and operating at deep-cryogenic temperatures ...
In this report, spectroscopy was used to track the energy of different states in a LiHoF4 sample around its critical temperature. The experimental setup consist of a Cooper cavity with the sample, an antenna and a resonator inside. This cavity is attached ...
Quantum computing is one of the great scientific challenges of the 21st century. Small-scalesystems today promise to surpass classical computers in the coming years and to enable thesolution of classically intractable computational tasks in the fields of q ...
Quantum computing promises to revolutionize our lives, achieving unprecedented computational powers and unlocking new possibilities in drug discovery, chemical simulations and cryptography. The fundamental unit of computation of a quantum computer is the q ...
Magnetic impurities generate a wealth of phenomena on surfaces. On metals, conducting electrons screen the magnetic moment giving rise to the Kondo effect. On superconductors, the Yu-Shiba-Rusinov (YSR) states emerge inside the superconducting gap due to t ...
As quantum processors grow in complexity, attention is moving to the scaling prospects of the entire quantum computing system, including the classical support hardware. Recent results in high-fidelity control of individual spins in silicon, combined with d ...
The energy landscape of a single electron in a triple quantum dot can be tuned such that the energy separation between ground and excited states becomes a flat function of the relevant gate voltages. These so-called sweet spots are beneficial for charge co ...
We propose a scheme for universal quantum computing based on Kramers rare-earth ions. Their nuclear spins in the presence of a Zeeman-split electronic crystal field ground state act as "passive" qubits that store quantum information. The "active" qubits ar ...