Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Quantum computing holds the promise to solve many of today's intractable problems. A solid-state quantum computer (QC) is generally made of an array of qubits implemented in one of many solid-state technologies and operating at deep-cryogenic temperatures (10-to-20mK). Silicon spin qubits are a promising candidate for scalable QCs, due to their size, long coherence times and potential for co-integration with the required classical control and readout electronics. Recently, semiconductor spin qubits have been demonstrated to operate at ~1K, thus accelerating the achievement of a compact QC [1]. Classical qubit control electronics has also progressed, with the demonstration of fully-integrated control of spin qubits [2] and transmons [3] implemented in a cryo-CMOS technology. While a cryo-CMOS integrated circuit has been co-integrated with quantum dots [4], fully-integrated readout electronics has not yet been addressed in the literature.
Sandrine Gerber, Gabriel Aeppli