Clique-widthIn graph theory, the clique-width of a graph G is a parameter that describes the structural complexity of the graph; it is closely related to treewidth, but unlike treewidth it can be small for dense graphs. It is defined as the minimum number of labels needed to construct G by means of the following 4 operations : Creation of a new vertex v with label i (denoted by i(v)) Disjoint union of two labeled graphs G and H (denoted by ) Joining by an edge every vertex labeled i to every vertex labeled j (denoted by η(i,j)), where i ≠ j Renaming label i to label j (denoted by ρ(i,j)) Graphs of bounded clique-width include the cographs and distance-hereditary graphs.
Clique coverIn graph theory, a clique cover or partition into cliques of a given undirected graph is a partition of the vertices into cliques, subsets of vertices within which every two vertices are adjacent. A minimum clique cover is a clique cover that uses as few cliques as possible. The minimum k for which a clique cover exists is called the clique cover number of the given graph. A clique cover of a graph G may be seen as a graph coloring of the complement graph of G, the graph on the same vertex set that has edges between non-adjacent vertices of G.
Greedy coloringIn the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but they do not, in general, use the minimum number of colors possible. Different choices of the sequence of vertices will typically produce different colorings of the given graph, so much of the study of greedy colorings has concerned how to find a good ordering.
Meyniel graphIn graph theory, a Meyniel graph is a graph in which every odd cycle of length five or more has at least two chords (edges connecting non-consecutive vertices of the cycle). The chords may be uncrossed (as shown in the figure) or they may cross each other, as long as there are at least two of them. The Meyniel graphs are named after Henri Meyniel (also known for Meyniel's conjecture), who proved that they are perfect graphs in 1976, long before the proof of the strong perfect graph theorem completely characterized the perfect graphs.
Induced pathIn the mathematical area of graph theory, an induced path in an undirected graph G is a path that is an induced subgraph of G. That is, it is a sequence of vertices in G such that each two adjacent vertices in the sequence are connected by an edge in G, and each two nonadjacent vertices in the sequence are not connected by any edge in G. An induced path is sometimes called a snake, and the problem of finding long induced paths in hypercube graphs is known as the snake-in-the-box problem.
Perfectly orderable graphIn graph theory, a perfectly orderable graph is a graph whose vertices can be ordered in such a way that a greedy coloring algorithm with that ordering optimally colors every induced subgraph of the given graph. Perfectly orderable graphs form a special case of the perfect graphs, and they include the chordal graphs, comparability graphs, and distance-hereditary graphs. However, testing whether a graph is perfectly orderable is NP-complete.
Block graphIn graph theory, a branch of combinatorial mathematics, a block graph or clique tree is a type of undirected graph in which every biconnected component (block) is a clique. Block graphs are sometimes erroneously called Husimi trees (after Kôdi Husimi), but that name more properly refers to cactus graphs, graphs in which every nontrivial biconnected component is a cycle. Block graphs may be characterized as the intersection graphs of the blocks of arbitrary undirected graphs.
Chordal graphIn the mathematical area of graph theory, a chordal graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every induced cycle in the graph should have exactly three vertices. The chordal graphs may also be characterized as the graphs that have perfect elimination orderings, as the graphs in which each minimal separator is a clique, and as the intersection graphs of subtrees of a tree.
Trivially perfect graphIn graph theory, a trivially perfect graph is a graph with the property that in each of its induced subgraphs the size of the maximum independent set equals the number of maximal cliques. Trivially perfect graphs were first studied by but were named by ; Golumbic writes that "the name was chosen since it is trivial to show that such a graph is perfect." Trivially perfect graphs are also known as comparability graphs of trees, arborescent comparability graphs, and quasi-threshold graphs.
Ptolemaic graphIn graph theory, a Ptolemaic graph is an undirected graph whose shortest path distances obey Ptolemy's inequality, which in turn was named after the Greek astronomer and mathematician Ptolemy. The Ptolemaic graphs are exactly the graphs that are both chordal and distance-hereditary; they include the block graphs and are a subclass of the perfect graphs. A graph is Ptolemaic if and only if it obeys any of the following equivalent conditions: The shortest path distances obey Ptolemy's inequality: for every four vertices u, v, w, and x, the inequality d(u,v)d(w,x) + d(u,x)d(v,w) ≥ d(u,w)d(v,x) holds.