In graph theory, a trivially perfect graph is a graph with the property that in each of its induced subgraphs the size of the maximum independent set equals the number of maximal cliques. Trivially perfect graphs were first studied by but were named by ; Golumbic writes that "the name was chosen since it is trivial to show that such a graph is perfect." Trivially perfect graphs are also known as comparability graphs of trees, arborescent comparability graphs, and quasi-threshold graphs.
Trivially perfect graphs have several other equivalent characterizations:
They are the comparability graphs of order-theoretic trees. That is, let T be a partial order such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the impact of economic measurement choices on data visibility and governance, emphasizing the importance of defining categories for understanding and policymaking.
In graph theory, a threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: Addition of a single isolated vertex to the graph. Addition of a single dominating vertex to the graph, i.e. a single vertex that is connected to all other vertices. For example, the graph of the figure is a threshold graph. It can be constructed by beginning with a single-vertex graph (vertex 1), and then adding black vertices as isolated vertices and red vertices as dominating vertices, in the order in which they are numbered.
In the mathematical field of graph theory, a permutation graph is a graph whose vertices represent the elements of a permutation, and whose edges represent pairs of elements that are reversed by the permutation. Permutation graphs may also be defined geometrically, as the intersection graphs of line segments whose endpoints lie on two parallel lines. Different permutations may give rise to the same permutation graph; a given graph has a unique representation (up to permutation symmetry) if it is prime with respect to the modular decomposition.
In graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph. (It is not to be confused with a universally quantified vertex in the logic of graphs.) A graph that contains a universal vertex may be called a cone. In this context, the universal vertex may also be called the apex of the cone.
When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...
WILEY2023
Cographs constitute a small point in the atlas of graph classes. However, by zooming in on this point, we discover a complex world, where many parameters jump from finiteness to infinity. In the present paper, we identify several milestones in the world of ...
ELSEVIER2022
, , ,
Maximal subgraph mining is increasingly important in various domains, including bioinformatics, genomics, and chemistry, as it helps identify common characteristics among a set of graphs and enables their classification into different categories. Existing ...