Summary
The second moment of area, or second area moment, or quadratic moment of area and also known as the area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with regard to an arbitrary axis. The second moment of area is typically denoted with either an (for an axis that lies in the plane of the area) or with a (for an axis perpendicular to the plane). In both cases, it is calculated with a multiple integral over the object in question. Its dimension is L (length) to the fourth power. Its unit of dimension, when working with the International System of Units, is meters to the fourth power, m4, or inches to the fourth power, in4, when working in the Imperial System of Units or the US customary system. In structural engineering, the second moment of area of a beam is an important property used in the calculation of the beam's deflection and the calculation of stress caused by a moment applied to the beam. In order to maximize the second moment of area, a large fraction of the cross-sectional area of an I-beam is located at the maximum possible distance from the centroid of the I-beam's cross-section. The planar second moment of area provides insight into a beam's resistance to bending due to an applied moment, force, or distributed load perpendicular to its neutral axis, as a function of its shape. The polar second moment of area provides insight into a beam's resistance to torsional deflection, due to an applied moment parallel to its cross-section, as a function of its shape. Different disciplines use the term moment of inertia (MOI) to refer to different moments. It may refer to either of the planar second moments of area (often or with respect to some reference plane), or the polar second moment of area (, where r is the distance to some reference axis). In each case the integral is over all the infinitesimal elements of area, dA, in some two-dimensional cross-section.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
CIVIL-238: Structural mechanics (for GC)
The course discusses the basic principles of structural mechanics, analyzing the performance of materials and structures against loading and focuses on the stress strain relationships and the effect
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
ME-104: Introduction to structural mechanics
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Show more
Related lectures (177)
Hydrostatics: Newton's 2nd Law and Moments
Explores hydrostatics, Newton's 2nd law, moments, and forces on submerged surfaces.
Calculating Centroid and Second Moment
Explains the step-by-step process of calculating centroids and second moments of complex shapes using integration and the parallel axis theorem.
Elasticity in Mechanics: Rods, Buckling, and Heat Transfer
Covers continuum bars, elasticity, rods, heat transfer, and structural analysis.
Show more
Related publications (40)

Energy dissipation in fiber-polymer composites adhesive joints under cyclic loading

Ghazaleh Eslami

Sustainable development has emerged as a paramount consideration in various fields of industry, including construction, to preserve the environment and its finite resources. Lightweight structures, such as fiber-polymer composite structures, address both s ...
EPFL2023
Show more
Related concepts (9)
Deflection (engineering)
In structural engineering, deflection is the degree to which a part of a structural element is displaced under a load (because it deforms). It may refer to an angle or a distance. The deflection distance of a member under a load can be calculated by integrating the function that mathematically describes the slope of the deflected shape of the member under that load. Standard formulas exist for the deflection of common beam configurations and load cases at discrete locations.
Stiffness
Stiffness is the extent to which an object resists deformation in response to an applied force. The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is. The stiffness, of a body is a measure of the resistance offered by an elastic body to deformation. For an elastic body with a single degree of freedom (DOF) (for example, stretching or compression of a rod), the stiffness is defined as where, is the force on the body is the displacement produced by the force along the same degree of freedom (for instance, the change in length of a stretched spring) In the International System of Units, stiffness is typically measured in newtons per meter ().
Bending moment
In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend. The most common or simplest structural element subjected to bending moments is the beam. The diagram shows a beam which is simply supported (free to rotate and therefore lacking bending moments) at both ends; the ends can only react to the shear loads. Other beams can have both ends fixed (known as encastre beam); therefore each end support has both bending moments and shear reaction loads.
Show more
Related MOOCs (1)