Canonical commutation relationIn quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, between the position operator x and momentum operator px in the x direction of a point particle in one dimension, where [x , px] = x px − px x is the commutator of x and px , i is the imaginary unit, and ħ is the reduced Planck's constant h/2π, and is the unit operator.
Euler's rotation theoremIn geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two rotations is also a rotation. Therefore the set of rotations has a group structure, known as a rotation group. The theorem is named after Leonhard Euler, who proved it in 1775 by means of spherical geometry.
Pin groupIn mathematics, the pin group is a certain subgroup of the Clifford algebra associated to a quadratic space. It maps 2-to-1 to the orthogonal group, just as the spin group maps 2-to-1 to the special orthogonal group. In general the map from the Pin group to the orthogonal group is not surjective or a universal covering space, but if the quadratic form is definite (and dimension is greater than 2), it is both.
Plane of rotationIn geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can be used to break down the rotations into simpler parts. This can be done using geometric algebra, with the planes of rotations associated with simple bivectors in the algebra.
Ladder operatorIn linear algebra (and its application to quantum mechanics), a raising or lowering operator (collectively known as ladder operators) is an operator that increases or decreases the eigenvalue of another operator. In quantum mechanics, the raising operator is sometimes called the creation operator, and the lowering operator the annihilation operator. Well-known applications of ladder operators in quantum mechanics are in the formalisms of the quantum harmonic oscillator and angular momentum.
Orientation entanglementIn mathematics and physics, the notion of orientation entanglement is sometimes used to develop intuition relating to the geometry of spinors or alternatively as a concrete realization of the failure of the special orthogonal groups to be simply connected. Spatial vectors alone are not sufficient to describe fully the properties of rotations in space. Consider the following example. A coffee cup is suspended in a room by a pair of elastic rubber bands fixed to the walls of the room.
Table of Lie groupsThis article gives a table of some common Lie groups and their associated Lie algebras. The following are noted: the topological properties of the group (dimension; connectedness; compactness; the nature of the fundamental group; and whether or not they are simply connected) as well as on their algebraic properties (abelian; simple; semisimple). For more examples of Lie groups and other related topics see the list of simple Lie groups; the Bianchi classification of groups of up to three dimensions; see classification of low-dimensional real Lie algebras for up to four dimensions; and the list of Lie group topics.
Wigner D-matrixThe Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German. Let Jx, Jy, Jz be generators of the Lie algebra of SU(2) and SO(3).