Summary
In database theory, relational algebra is a theory that uses algebraic structures for modeling data, and defining queries on it with a well founded semantics. The theory was introduced by Edgar F. Codd. The main application of relational algebra is to provide a theoretical foundation for relational databases, particularly query languages for such databases, chief among which is SQL. Relational databases store tabular data represented as relations. Queries over relational databases often likewise return tabular data represented as relations. The main purpose of relational algebra is to define operators that transform one or more input relations to an output relation. Given that these operators accept relations as input and produce relations as output, they can be combined and used to express potentially complex queries that transform potentially many input relations (whose data are stored in the database) into a single output relation (the query results). Unary operators accept as input a single relation; examples include operators to filter certain attributes (columns) or tuples (rows) from an input relation. Binary operators accept as input two relations; such operators combine the two input relations into a single output relation by, for example, taking all tuples found in either relation, removing tuples from the first relation found in the second relation, extending the tuples of the first relation with tuples in the second relation matching certain conditions, and so forth. Other more advanced operators can also be included, where the inclusion or exclusion of certain operators gives rise to a family of algebras. Relational algebra received little attention outside of pure mathematics until the publication of E.F. Codd's relational model of data in 1970. Codd proposed such an algebra as a basis for database query languages. (See section Implementations.) Relational algebra operates on homogenous sets of tuples where we commonly interpret m to be the number of rows in a table and n to be the number of columns.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.