Restriction (mathematics)In mathematics, the restriction of a function is a new function, denoted or obtained by choosing a smaller domain for the original function The function is then said to extend Let be a function from a set to a set If a set is a subset of then the restriction of to is the function given by for Informally, the restriction of to is the same function as but is only defined on .
Query planA query plan (or query execution plan) is a sequence of steps used to access data in a SQL relational database management system. This is a specific case of the relational model concept of access plans. Since SQL is declarative, there are typically many alternative ways to execute a given query, with widely varying performance. When a query is submitted to the database, the query optimizer evaluates some of the different, correct possible plans for executing the query and returns what it considers the best option.
Projection (relational algebra)In relational algebra, a projection is a unary operation written as , where is a relation and are attribute names. Its result is defined as the set obtained when the components of the tuples in are restricted to the set – it discards (or excludes) the other attributes. In practical terms, if a relation is thought of as a table, then projection can be thought of as picking a subset of its columns. For example, if the attributes are (name, age), then projection of the relation {(Alice, 5), (Bob, 8)} onto attribute list (age) yields {5,8} – we have discarded the names, and only know what ages are present.
Transitive closureIn mathematics, the transitive closure R^+ of a homogeneous binary relation R on a set X is the smallest relation on X that contains R and is transitive. For finite sets, "smallest" can be taken in its usual sense, of having the fewest related pairs; for infinite sets R^+ is the unique minimal transitive superset of R. For example, if X is a set of airports and x R y means "there is a direct flight from airport x to airport y" (for x and y in X), then the transitive closure of R on X is the relation R^+ such that x R^+ y means "it is possible to fly from x to y in one or more flights".
MultisetIn mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the multiplicity of that element in the multiset. As a consequence, an infinite number of multisets exist which contain only elements a and b, but vary in the multiplicities of their elements: The set contains only elements a and b, each having multiplicity 1 when is seen as a multiset.
Ternary relationIn mathematics, a ternary relation or triadic relation is a finitary relation in which the number of places in the relation is three. Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs, i.e. a subset of the Cartesian product A × B of some sets A and B, so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A, B and C.
Entity–relationship modelAn entity–relationship model (or ER model) describes interrelated things of interest in a specific domain of knowledge. A basic ER model is composed of entity types (which classify the things of interest) and specifies relationships that can exist between entities (instances of those entity types). In software engineering, an ER model is commonly formed to represent things a business needs to remember in order to perform business processes.
Finitary relationIn mathematics, a finitary relation over sets X1, ..., Xn is a subset of the Cartesian product X1 × ⋯ × Xn; that is, it is a set of n-tuples (x1, ..., xn) consisting of elements xi in Xi. Typically, the relation describes a possible connection between the elements of an n-tuple. For example, the relation "x is divisible by y and z" consists of the set of 3-tuples such that when substituted to x, y and z, respectively, make the sentence true. The non-negative integer n giving the number of "places" in the relation is called the arity, adicity or degree of the relation.
Query languageA query language, also known as data query language or database query language (DQL), is a computer language used to make queries in databases and information systems. A well known example is the Structured Query Language (SQL). Broadly, query languages can be classified according to whether they are database query languages or information retrieval query languages. The difference is that a database query language attempts to give factual answers to factual questions, while an information retrieval query language attempts to find documents containing information that is relevant to an area of inquiry.
Object–relational impedance mismatchObject–relational impedance mismatch creates difficulties going from data in relational data stores (relational database management system [“RDBMS”]) to usage in domain-driven object models. Object-orientation (OO) is the default method for business-centric design in programming languages. The problem lies in neither relational nor OO, but in the conceptual difficulty mapping between the two logic models. Both are logical models implementable differently on database servers, programming languages, design patterns, or other technologies.