Summary
In mathematics, a ternary relation or triadic relation is a finitary relation in which the number of places in the relation is three. Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs, i.e. a subset of the Cartesian product A × B of some sets A and B, so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A, B and C. An example of a ternary relation in elementary geometry can be given on triples of points, where a triple is in the relation if the three points are collinear. Another geometric example can be obtained by considering triples consisting of two points and a line, where a triple is in the ternary relation if the two points determine (are incident with) the line. A function f: A × B → C in two variables, mapping two values from sets A and B, respectively, to a value in C associates to every pair (a,b) in A × B an element f(a, b) in C. Therefore, its graph consists of pairs of the form ((a, b), f(a, b)). Such pairs in which the first element is itself a pair are often identified with triples. This makes the graph of f a ternary relation between A, B and C, consisting of all triples (a, b, f(a, b)), satisfying a in A, b in B, and f(a, b) in C. Cyclic order Given any set A whose elements are arranged on a circle, one can define a ternary relation R on A, i.e. a subset of A3 = A × A × A, by stipulating that R(a, b, c) holds if and only if the elements a, b and c are pairwise different and when going from a to c in a clockwise direction one passes through b. For example, if A = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } represents the hours on a clock face, then R(8, 12, 4) holds and R(12, 8, 4) does not hold. Betweenness relation Ternary equivalence relation Congruence modulo m The ordinary congruence of arithmetics which holds for three integers a, b, and m if and only if m divides a − b, formally may be considered as a ternary relation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (37)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
MATH-681: Reading group in applied topology II
In this reading group, we will work together through recent important papers in applied topology. Participants will take turns presenting articles, then leading a discussion of the contents.
Show more
Related lectures (102)
Belief Propagation: Key Methods and Analysis
Covers Belief Propagation, a key method for both analysis and algorithm.
Linear Regression: Statistical Inference Perspective
Explores linear regression from a statistical inference perspective, covering probabilistic models, ground truth, labels, and maximum likelihood estimators.
2D Potential Flows
Explores 2D potential flows in fluid dynamics, focusing on stream function and velocity potential relationships and visualization techniques.
Show more
Related publications (109)