In electrical engineering, electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. All electrical networks can be analyzed as multiple electrical elements interconnected by wires. Where the elements roughly correspond to real components, the representation can be in the form of a schematic diagram or circuit diagram. This is called a lumped-element circuit model. In other cases, infinitesimal elements are used to model the network in a distributed-element model. These ideal electrical elements represent actual, physical electrical or electronic components. Still, they do not exist physically and are assumed to have ideal properties. In contrast, actual electrical components have less than ideal properties, a degree of uncertainty in their values, and some degree of nonlinearity. To model the nonideal behavior of a real circuit component may require a combination of multiple ideal electrical elements to approximate its function. For example, an inductor circuit element is assumed to have inductance but no resistance or capacitance, while a real inductor, a coil of wire, has some resistance in addition to its inductance. This may be modeled by an ideal inductance element in series with a resistance. Circuit analysis using electric elements is useful for understanding practical networks of electrical components. Analyzing how a network is affected by its individual elements makes it possible to estimate how a real network will behave. Circuit elements can be classified into different categories. One is how many terminals they have to connect them to other components: One-port elements - represent the simplest components, with only two terminals to connect to. Examples are resistances, capacitances, inductances, and diodes. Multiport elements - these have more than two terminals. They connect to the external circuit through multiple pairs of terminals called ports.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (28)
EE-370: Electric power systems
Ce cours décrit les composants d'un réseau électrique. Il explique le fonctionnement des réseaux électriques et leurs limites d'utilisation. Il introduit les outils de base permettant de les piloter.
EE-295: Electrical systems and electronics I
Le but de ce cours est d'apporter les connaissances et les expériences fondamentales pour comprendre les systèmes électriques et électroniques de base.
EE-407: Fundamentals of electrical circuits and systems II
This course provides an introduction to the theory and analysis methods of electrical circuits.
Show more
Related lectures (55)
Power Network State Estimation
Covers power network state estimation, telemetry-based state estimation, and loss calculation.
Economic Dispatching: Marginal Costs and Power Plants
Covers economic dispatching, marginal costs, symmetrical components, and power flow optimization in electrical networks.
Short-Circuit Currents Calculation
Covers the calculation of short-circuit currents in electrical networks and the equivalent models of components.
Show more
Related publications (111)

Gate unit for a gate-commutated thyristor and integrated gate-commutated thyristor

Drazen Dujic, Jakub Kucka

The invention relates to a gate unit (22) for controlling a gate commutated thyristor (21), comprising: - a voltage selector (26) for selectively applying a high supply potential (Vpos), a middle supply potential (Vmid), and a low supply potential (Vneg); ...
2023

A Front-End CMOS Interface Circuit With High Voltage Charge Pump and Oscillator for Capacitive Micromachined Ultrasonic Transducers

Sandro Carrara, Gian Luca Barbruni, Zhengwen Jiang, Yihe Zhao

Label-free biosensors, combined with miniaturized micro-electromechanical sensory platforms, offer an attractive solution for real-time and facile monitoring of biomolecules due to their high sensitivity and selectivity without the need for specifically la ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

New Insights for Parasitic Effects of Label-Free Biosensors Based on Capacitive Micromachined Ultrasonic Transducers

Sandro Carrara, Zhengwen Jiang, Yihe Zhao, Jie Li

Capacitive micromachined ultrasonic transducers (CMUTs) are regarded as an attractive candidate in bio-applications such as imaging and molecule monitoring. However, the previous researches on biochemical sensing are mostly air-coupled application based on ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022
Show more
Related concepts (23)
Network analysis (electrical circuits)
In electrical engineering and electronics, a network is a collection of interconnected components. Network analysis is the process of finding the voltages across, and the currents through, all network components. There are many techniques for calculating these values; however, for the most part, the techniques assume linear components. Except where stated, the methods described in this article are applicable only to linear network analysis.
Two-port network
In electronics, a two-port network (a kind of four-terminal network or quadripole) is an electrical network (i.e. a circuit) or device with two pairs of terminals to connect to external circuits. Two terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the current entering one terminal must equal the current emerging from the other terminal on the same port. The ports constitute interfaces where the network connects to other networks, the points where signals are applied or outputs are taken.
Lumped-element model
The lumped-element model (also called lumped-parameter model, or lumped-component model) is a simplified representation of a physical system or circuit that assumes all components are concentrated at a single point and their behavior can be described by idealized mathematical models. The lumped-element model simplifies the system or circuit behavior description into a topology. It is useful in electrical systems (including electronics), mechanical multibody systems, heat transfer, acoustics, etc.
Show more
Related MOOCs (2)
Conversion electromécanique II
Principes de fonctionnement, construction, calcul et applications des moteurs electriques.
Conversion electromécanique II
Principes de fonctionnement, construction, calcul et applications des moteurs electriques.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.