In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth. On its own, the term "latitude" normally refers to the geodetic latitude as defined below. Briefly, the geodetic latitude of a point is the angle formed between the vector perpendicular (or normal) to the ellipsoidal surface from the point, and the plane of the equator. Background Two levels of abstraction are employed in the definitions of latitude and longitude. In the first step the physical surface is modeled by the geoid, a surface which approximates the mean sea level over the oceans and its continuation u
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (5)

On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes - Part 2: The effects of the El Nino/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes

Anthony Christopher Davison, Linda Frossard

We present the first spatial analysis of "fingerprints" of the El Nino/Southern Oscillation (ENSO) and atmospheric aerosol load after major volcanic eruptions (El Chichon and Mt. Pinatubo) in extreme low and high (termed ELOs and EHOs, respectively) and mean values of total ozone for the northern and southern mid-latitudes (defined as the region between 30 degrees and 60 degrees north and south, respectively). Significant influence on ozone extremes was found for the warm ENSO phase in both hemispheres during spring, especially towards low latitudes, indicating the enhanced ozone transport from the tropics to the extra-tropics. Further, the results confirm findings of recent work on the connection between the ENSO phase and the strength and extent of the southern ozone "collar". For the volcanic eruptions the analysis confirms findings of earlier studies for the northern mid-latitudes and gives new insights for the Southern Hemisphere. The results provide evidence that the negative effect of the eruption of El Chichon might be partly compensated by a strong warm ENSO phase in 1982-1983 at southern mid-latitudes. The strong west-east gradient in the coefficient estimates for the Mt. Pinatubo eruption and the analysis of the relationship between the AAO and ENSO phase, the extent and the position of the southern ozone "collar" and the polar vortex structure provide clear evidence for a dynamical " masking" of the volcanic signal at southern mid-latitudes. The paper also analyses the contribution of atmospheric dynamics and chemistry to long-term total ozone changes. Here, quite heterogeneous results have been found on spatial scales. In general the results show that EESC and the 11-yr solar cycle can be identified as major contributors to long-term ozone changes. However, a strong contribution of dynamical features (El Nino/Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Antarctic Oscillation (AAO), Quasi-Biennial Oscillation (QBO)) to ozone variability and trends is found at a regional level. For the QBO (at 30 and 50 hPa), strong influence on total ozone variability and trends is found over large parts of the northern and southern mid-latitudes, especially towards equatorial latitudes. Strong influence of ENSO is found over the Northern and Southern Pacific, Central Europe and central southern mid-latitudes. For the NAO, strong influence on column ozone is found over Labrador/Greenland, the Eastern United States, the Euro-Atlantic Sector, and Central Europe. For the NAO's southern counterpart, the AAO, strong influence on ozone variability and long-term changes is found at lower southern mid-latitudes, including the southern parts of South America and the Antarctic Peninsula, and central southern mid-latitudes.
Copernicus Publications2013

Planck 2013 results. XI. All-sky model of thermal dust emission

Fabio Finelli, Julien Lesgourgues

This paper presents an all-sky model of dust emission from the Planck 353, 545, and 857 GHz, and IRAS 100 mu m data. Using a modified blackbody fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a good representation of the IRAS and Planck data at 5 0 between 353 and 3000 GHz (850 and 100 mu m). It shows variations of the order of 30% compared with the widely-used model of Finkbeiner, Davis, and Schlegel. The Planck data allow us to estimate the dust temperature uniformly over the whole sky, down to an angular resolution of 5 0, providing an improved estimate of the dust optical depth compared to previous all-sky dust model, especially in high-contrast molecular regions where the dust temperature varies strongly at small scales in response to dust evolution, extinction, and/or local production of heating photons. An increase of the dust opacity at 353 GHz, tau(353)/N-H, from the diffuse to the denser interstellar medium (ISM) is reported. It is associated with a decrease in the observed dust temperature, T-obs, that could be due at least in part to the increased dust opacity. We also report an excess of dust emission at HI column densities lower than 10(20) cm(-2) that could be the signature of dust in the warm ionized medium. In the diffuse ISM at high Galactic latitude, we report an anticorrelation between tau(353)/N-H and T-obs while the dust specific luminosity, i.e., the total dust emission integrated over frequency (the radiance) per hydrogen atom, stays about constant, confirming one of the Planck Early Results obtained on selected fields. This e ff ect is compatible with the view that, in the diffuse ISM, Tobs responds to spatial variations of the dust opacity, due to variations of dust properties, in addition to (small) variations of the radiation field strength. The implication is that in the di ff use high-latitude ISM tau(353) is not as reliable a tracer of dust column density as we conclude it is in molecular clouds where the correlation of tau(353) with dust extinction estimated using colour excess measurements on stars is strong. To estimate Galactic E(B-V) in extragalactic fields at high latitude we develop a new method based on the thermal dust radiance, instead of the dust optical depth, calibrated to E(B-V) using reddening measurements of quasars deduced from Sloan Digital Sky Survey data.
Edp Sciences S A2014
Show more
Related people

No results

Related units

No results

Related concepts (85)
Earth is the third planet from the Sun and the only astronomical object known to harbor life. This is enabled by Earth being a water world, the only one in the Solar System sustaining liquid surface w
Longitude (ˈlɒndʒᵻtjuːd, ˈlɒŋɡᵻ-) is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement,
The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly
Show more
Related courses (18)
CH-353: Introduction to electronic structure methods
Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbation theory, configuration interaction, coupled-cluster theory, density functional theory.
ENV-340: Fundamentals of satellite positioning
Bases des références géodésiques, principe de mesure utilisé en localisation par satellites et de l'estimation de la qualité de positions GNSS (Global Navigation Satellites Systems).
PHYS-118: Building physics
Ce cours traite des principaux phénomènes physiques observables dans le bâtiment et doit permettre à l'étudiant d'acquérir des connaissances de base dans le domaine de la physique du bâtiment.
Show more