Summary
Longitude (ˈlɒndʒᵻtjuːd, ˈlɒŋɡᵻ-) is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Meridians are imaginary semicircular lines running from pole to pole that connect points with the same longitude. The prime meridian defines 0° longitude; by convention the International Reference Meridian for the Earth passes near the Royal Observatory in Greenwich, south-east London on the island of Great Britain. Positive longitudes are east of the prime meridian, and negative ones are west. Because of the Earth's rotation, there is a close connection between longitude and time measurement. Scientifically precise local time varies with longitude: a difference of 15° longitude corresponds to a one-hour difference in local time, due to the differing position in relation to the Sun. Comparing local time to an absolute measure of time allows longitude to be determined. Depending on the era, the absolute time might be obtained from a celestial event visible from both locations, such as a lunar eclipse, or from a time signal transmitted by telegraph or radio. The principle is straightforward, but in practice finding a reliable method of determining longitude took centuries and required the effort of some of the greatest scientific minds. A location's north–south position along a meridian is given by its latitude, which is approximately the angle between the equatorial plane and the normal from the ground at that location. Longitude is generally given using the geodetic normal or the gravity direction. The astronomical longitude can differ slightly from the ordinary longitude because of vertical deflection, small variations in Earth's gravitational field (see astronomical latitude). History of longitude The concept of longitude was first developed by ancient Greek astronomers. Hipparchus (2nd century BCE) used a coordinate system that assumed a spherical Earth, and divided it into 360° as we still do today.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (132)
Longitude
Longitude (ˈlɒndʒᵻtjuːd, ˈlɒŋɡᵻ-) is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Meridians are imaginary semicircular lines running from pole to pole that connect points with the same longitude. The prime meridian defines 0° longitude; by convention the International Reference Meridian for the Earth passes near the Royal Observatory in Greenwich, south-east London on the island of Great Britain.
Navigation
Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another. The field of navigation includes four general categories: land navigation, marine navigation, aeronautic navigation, and space navigation. It is also the term of art used for the specialized knowledge used by navigators to perform navigation tasks. All navigational techniques involve locating the navigator's position compared to known locations or patterns.
Degree (angle)
A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI brochure as an accepted unit. Because a full rotation equals 2pi radians, one degree is equivalent to pi/180 radians. The original motivation for choosing the degree as a unit of rotations and angles is unknown.
Show more
Related courses (3)
ENV-140: Fundamentals of geomatics
Bases de la géomatique pour les ingénieurs civil et en environnement. Présentation des méthodes d'acquisition, de gestion et de représentation des géodonnées. Apprentissage pratique avec des méthodes
ENV-340: Fundamentals of satellite positioning
Bases des références géodésiques, principe de mesure utilisé en localisation par satellites et de l'estimation de la qualité de positions GNSS (Global Navigation Satellites Systems).
ENV-542: Advanced satellite positioning
All fundamental principles behind modern satellite positioning to acquire, track and evaluate direct and indirect satellite signals and process them in relation to example applications: Earth monito
Related lectures (55)
Coordinate Systems: Frames of Reference
Explains various coordinate systems used in space missions and the precession of equinoxes.
Taxi Trajectory Management
Covers the implementation of an information system for managing taxi trajectories, including filtering data, creating trajectory models, and comparing performance.
Seasons and Ecliptic Simulator
Explains seasons, equinoxes, solstices, Earth's orbit, and solar time.
Show more