Urbain Jean Joseph Le Verrier FRS (FOR) HFRSE (yʁbɛ̃ ʒɑ̃ ʒɔzɛf lə vɛʁje; 11 March 1811 – 23 September 1877) was a French astronomer and mathematician who specialized in celestial mechanics and is best known for predicting the existence and position of Neptune using only mathematics. The calculations were made to explain discrepancies with Uranus's orbit and the laws of Kepler and Newton. Le Verrier sent the coordinates to Johann Gottfried Galle in Berlin, asking him to verify. Galle found Neptune in the same night he received Le Verrier's letter, within 1° of the predicted position. The discovery of Neptune is widely regarded as a dramatic validation of celestial mechanics, and is one of the most remarkable moments of 19th-century science.
Le Verrier was born at Saint-Lô, Manche, France, in a modest bourgeois family, his parents being, Louis-Baptiste Le Verrier and Marie-Jeanne-Josephine-Pauline de Baudre. He studied at École Polytechnique. He briefly studied chemistry under Gay-Lussac, writing papers on the combinations of phosphorus and hydrogen, and phosphorus and oxygen. He then switched to astronomy, particularly celestial mechanics, and accepted a job at the Paris Observatory. He spent most of his professional life there, and eventually became that institution's Director, from 1854 to 1870 and again from 1873 to 1877.
In 1846, Le Verrier became a member of the French Academy of Sciences, and in 1855, he was elected a foreign member of the Royal Swedish Academy of Sciences. Le Verrier's name is one of the 72 names inscribed on the Eiffel Tower.
Le Verrier's first work in astronomy was presented to the Académie des Sciences in September 1839, entitled Sur les variations séculaires des orbites des planètes (On the Secular Variations of the Orbits of the Planets). This work addressed the then most-important question in astronomy: the stability of the Solar System, first investigated by Laplace. He was able to derive some important limits on the motions of the system, but due to the inaccurately-known masses of the planets, his results were tentative.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Neptune is the eighth planet from the Sun and the farthest IAU-recognized planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, and slightly more massive than its near-twin Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. Being composed primarily of gases and liquids, it has no well-defined solid surface.
Vulcan 'vVlk@n was a theorized planet that some pre-20th century astronomers thought existed in an orbit between Mercury and the Sun. Speculation about, and even purported observations of, intermercurial bodies or planets date back to the beginning of the 17th century. The case for their probable existence was bolstered by the French mathematician Urbain Le Verrier who, by 1859, had confirmed unexplained peculiarities in Mercury's orbit and predicted they had to be the result of gravitational influences of another unknown nearby planet or series of asteroids.
In astronomy, perturbation is the complex motion of a massive body subjected to forces other than the gravitational attraction of a single other massive body. The other forces can include a third (fourth, fifth, etc.) body, resistance, as from an atmosphere, and the off-center attraction of an oblate or otherwise misshapen body. The study of perturbations began with the first attempts to predict planetary motions in the sky. In ancient times the causes were unknown.
Small-scale turbomachinery is increasingly used in carbon-free energy conversion systems, such as commercial or domestic scale heat pumps, fuels cells for transportation and waste heat recovery. The usage of aerodynamic bearings allows the design of compac ...
We study the nonlinear evolution of the axisymmetric centrifugal instability developing on a columnar anticyclone with a Gaussian angular velocity using a semilinear approach. The model consists of two coupled equations: one for the linear evolution of the ...
Our motor outputs are constantly re-calibrated to adapt to systematic perturbations. This motor adaptation is thought to depend on the ability to form a memory of a systematic perturbation, often called an internal model. However, the mechanisms underlying ...