Vulcan 'vVlk@n was a theorized planet that some pre-20th century astronomers thought existed in an orbit between Mercury and the Sun. Speculation about, and even purported observations of, intermercurial bodies or planets date back to the beginning of the 17th century. The case for their probable existence was bolstered by the French mathematician Urbain Le Verrier who, by 1859, had confirmed unexplained peculiarities in Mercury's orbit and predicted they had to be the result of gravitational influences of another unknown nearby planet or series of asteroids. A French amateur astronomer's report that he had observed an object passing in front of the Sun that same year led Le Verrier to announce that the long sought after planet, which he gave the name Vulcan, had been discovered at last.
Many searches were conducted for Vulcan over the following decades, but despite several claimed observations, its existence could not be confirmed. The need for the planet as an explanation for Mercury's orbital peculiarities was later rendered unnecessary when Einstein's 1915 theory of general relativity showed that Mercury's departure from an orbit predicted by Newtonian physics was explained by effects arising from the curvature of spacetime caused by the Sun's mass.
Celestial bodies interior to the orbit of Mercury had been hypothesized, searched for, and even claimed as having been observed, for centuries.
Claims of actually seeing objects passing in front of the Sun included those made by the German astronomer Christoph Scheiner in 1611 (turned out to be the discovery of sunspots), British lawyer, writer and amateur astronomer Capel Lofft's observations of 'an opaque body traversing the sun's disc' on 6 January 1818, and Bavarian physician and astronomer Franz von Gruithuisen's 26 June 1819 report of seeing "two small spots...on the Sun, round, black and unequal in size". German astronomer J. W. Pastorff reported many observations also claiming to have seen two spots, with the first observation on 23 October 1822 and subsequent observations in 1823, 1834, 1836, and 1837; in 1834 the larger spot was recorded as 3 arcseconds across, and the smaller 1.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Urbain Jean Joseph Le Verrier FRS (FOR) HFRSE (yʁbɛ̃ ʒɑ̃ ʒɔzɛf lə vɛʁje; 11 March 1811 – 23 September 1877) was a French astronomer and mathematician who specialized in celestial mechanics and is best known for predicting the existence and position of Neptune using only mathematics. The calculations were made to explain discrepancies with Uranus's orbit and the laws of Kepler and Newton. Le Verrier sent the coordinates to Johann Gottfried Galle in Berlin, asking him to verify.
Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in accordance with the predictions of general relativity were performed in 1919, with increasingly precise measurements made in subsequent tests; and scientists claimed to have measured the gravitational redshift in 1925, although measurements sensitive enough to actually confirm the theory were not made until 1954.
In celestial mechanics, apsidal precession (or apsidal advance) is the precession (gradual rotation) of the line connecting the apsides (line of apsides) of an astronomical body's orbit. The apsides are the orbital points farthest (apoapsis) and closest (periapsis) from its primary body (therefore it can be also called after any of the apsides). The apsidal precession is the first time derivative of the argument of periapsis, one of the six main orbital elements of an orbit.
The thicknesss of the brittle lithosphere—the outer portion of a planetary body that fails via fracturing— plays a key role in the geological processes of that body. The properties of both a planet and its host star can influence that thickness, and the po ...
We report high-precision transit photometry for the recently detected planet HD 17156b. Using these new data with previously published transit photometry and radial velocity measurements, we perform a combined analysis based on a Markov Chain Monte Carlo a ...