In mathematics, a well-posed problem is one for which the following properties hold:
The problem has a solution
The solution is unique
The solution's behavior changes continuously with the initial conditions
Examples of archetypal well-posed problems include the Dirichlet problem for Laplace's equation, and the heat equation with specified initial conditions. These might be regarded as 'natural' problems in that there are physical processes modelled by these problems.
Problems that are not well-posed in the sense of Hadamard are termed ill-posed. Inverse problems are often ill-posed. For example, the inverse heat equation, deducing a previous distribution of temperature from final data, is not well-posed in that the solution is highly sensitive to changes in the final data.
Continuum models must often be discretized in order to obtain a numerical solution. While solutions may be continuous with respect to the initial conditions, they may suffer from numerical instability when solved with finite precision, or with errors in the data. Even if a problem is well-posed, it may still be ill-conditioned, meaning that a small error in the initial data can result in much larger errors in the answers. Problems in nonlinear complex systems (so-called chaotic systems) provide well-known examples of instability. An ill-conditioned problem is indicated by a large condition number.
If the problem is well-posed, then it stands a good chance of solution on a computer using a stable algorithm. If it is not well-posed, it needs to be re-formulated for numerical treatment. Typically this involves including additional assumptions, such as smoothness of solution. This process is known as regularization. Tikhonov regularization is one of the most commonly used for regularization of linear ill-posed problems.
The definition of a well-posed problem comes from the work of Jacques Hadamard on mathematical modeling of physical phenomena.
A method to determine the well-posedness of a problem is the energy method.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field. It is called an inverse problem because it starts with the effects and then calculates the causes. It is the inverse of a forward problem, which starts with the causes and then calculates the effects.
Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
A mathematical model is an abstract description of a concrete system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in applied mathematics and in the natural sciences (such as physics, biology, earth science, chemistry) and engineering disciplines (such as computer science, electrical engineering), as well as in non-physical systems such as the social sciences (such as economics, psychology, sociology, political science).
The course is about the derivation, theoretical analysis and implementation of the finite element method for the numerical approximation of partial differential equations in one and two space dimens
We cover the theory and applications of sparse stochastic processes (SSP). SSP are solutions of differential equations driven by non-Gaussian innovations. They admit a parsimonious representation in a
Dans ce cours on étudie la dynamique modale des structures mécaniques. Conceptes clés comme Mode Normale, Mass et Raideur effective, et Fréquences Propres sont appris pendant ce cours.
In this letter we consider mean field type control problems with multiple species that have different dynamics. We formulate the discretized problem using a new type of entropy-regularized multimarginal optimal transport problems where the cost is a decomp ...
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since-without additional prior assumpti ...
WILEY2023
, , ,
Most modern imaging systems incorporate a computational pipeline to infer the image of interest from acquired measurements. The Bayesian approach to solve such ill-posed inverse problems involves the characterization of the posterior distribution of the im ...